首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klinge A  Beutelmann R  Klump GM 《PloS one》2011,6(10):e26124
The amount of masking of sounds from one source (signals) by sounds from a competing source (maskers) heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz), two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth), and five different masker types (four complex multi-tone stimuli, one noise masker). A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker.  相似文献   

2.
Spatial release from masking refers to a benefit for speech understanding. It occurs when a target talker and a masker talker are spatially separated. In those cases, speech intelligibility for target speech is typically higher than when both talkers are at the same location. In cochlear implant listeners, spatial release from masking is much reduced or absent compared with normal hearing listeners. Perhaps this reduced spatial release occurs because cochlear implant listeners cannot effectively attend to spatial cues. Three experiments examined factors that may interfere with deploying spatial attention to a target talker masked by another talker. To simulate cochlear implant listening, stimuli were vocoded with two unique features. First, we used 50-Hz low-pass filtered speech envelopes and noise carriers, strongly reducing the possibility of temporal pitch cues; second, co-modulation was imposed on target and masker utterances to enhance perceptual fusion between the two sources. Stimuli were presented over headphones. Experiments 1 and 2 presented high-fidelity spatial cues with unprocessed and vocoded speech. Experiment 3 maintained faithful long-term average interaural level differences but presented scrambled interaural time differences with vocoded speech. Results show a robust spatial release from masking in Experiments 1 and 2, and a greatly reduced spatial release in Experiment 3. Faithful long-term average interaural level differences were insufficient for producing spatial release from masking. This suggests that appropriate interaural time differences are necessary for restoring spatial release from masking, at least for a situation where there are few viable alternative segregation cues.  相似文献   

3.
In a typical auditory scene, sounds from different sources and reflective surfaces summate in the ears, causing spatial cues to fluctuate. Prevailing hypotheses of how spatial locations may be encoded and represented across auditory neurons generally disregard these fluctuations and must therefore invoke additional mechanisms for detecting and representing them. Here, we consider a different hypothesis in which spatial perception corresponds to an intermediate or sub-maximal firing probability across spatially selective neurons within each hemisphere. The precedence or Haas effect presents an ideal opportunity for examining this hypothesis, since the temporal superposition of an acoustical reflection with sounds arriving directly from a source can cause otherwise stable cues to fluctuate. Our findings suggest that subjects’ experiences may simply reflect the spatial cues that momentarily arise under various acoustical conditions and how these cues are represented. We further suggest that auditory objects may acquire “edges” under conditions when interaural time differences are broadly distributed.  相似文献   

4.
The authors studied fused auditory image (FAI) movement trajectories under conditions of direct nonsimultaneous masking. This movement was created by a gradual change in a dichotically presented series of clicks with interaural differences in stimulation from 0 to ±700 s or from ±700 to 0 s. Binaurally presented transmissions of wide-band noise served as maskers. The location and length of the trajectories were evaluated without a masker and with five values of the time lag between the signal beginning and masker end. When the test signal duration was 200 ms, the length of the trajectories was 33–44° without a masker. In the first test group, this trajectory lay close to the median line of the head without a masker (irrespective of the movement direction) and moved away from it under masking conditions. When the FAI moved from the median line towards the right or left ear, the initial part of the trajectory was masked; when the movement direction was opposite, the final part was masked. In the second group, the trajectories were located near the ears when the FAI moved from either ear and shifted towards the median line as a result of masking. When the movement direction was opposite, they were close to the median line and shifted towards the ear under masking conditions. When the FAI moved along all trajectories, their initial parts were masked.  相似文献   

5.
Summary Hearing sensitivity and psychophysical tuning curves were determined for the mormyridGnathonemus petersii. Pure tone hearing thresholds were determined from 100 Hz to 2,500 Hz, with best sensitivity being about –31 dB (re: 1 dyne/ cm2) from 300 Hz to 1,000 Hz. In order to determine frequency tuning of the auditory system, psychophysical tuning curves (PTC's) were measured with the masker presented simultaneously with, or just ahead of, the 500 Hz test signal. The sound level for different frequencies needed to just mask the test tone were determined from 100 to 800 Hz. Maximum masking occurred in both forward and simultaneous conditions when the masker and the test tone were at the same frequency. As the masker was moved in frequency from 500 Hz, higher sound levels of maskers were needed to afford masking of the test tone. The data were similar in simultaneous and forward masking, with theQ 10 dB, a measure of sharpness of tuning, being about 5 in both cases. Data were compared for other species for which behavioral thresholds and PTC's are available.Gnathonemus hears about as wide a range of frequencies as the goldfish,Carassius auratus, although the PTC's for the two species are strikingly different. The PTC's forGnathonemus resemble those determined in a forward-masking paradigm for the clown knife fish,Notopterus chitala, even thoughGnathonemus has a wider hearing bandwidth.Abbreviations AM amplitude modulated - EOD electric organ discharge - PTC psychophysical tuning curve  相似文献   

6.
The binaural masking level difference (BMLD) is a psychophysical effect whereby signals masked by a noise at one ear become unmasked by sounds reaching the other. BMLD effects are largest at low frequencies where they depend on signal phase, suggesting that part of the physiological mechanism responsible for the BMLD resides in cells that are sensitive to interaural time disparities. We have investigated a physiological basis for unmasking in the responses of delay-sensitive cells in the central nucleus of the inferior colliculus in anaesthetized guinea pigs. The masking effects of a binaurally presented noise, as a function of the masker delay, were quantified by measuring the number of discharges synchronized to the signal, and by measuring the masked threshold. The noise level for masking was lowest at the best delay for the noise. The mean magnitude of the unmasking across our neural population was similar to the human psychophysical BMLD under the same signal and masker conditions.  相似文献   

7.
In anaesthesized guinea pigs the evoked potentials of the auditory cortex were studied in a forward masking paradigm. In-phase and out-of-phase binaurally presented clicks with interaural time delay (ITD) were used as masker, in-phase click with ITD = 0 served as probe signal. Addition of the masking stimulus suppressed the probe-evoked response that followed the masker. The magnitude of the suppression correlated with the amount of the masker-evoked response: an increase in masker-evoked excitation caused a greater reduction in probe response magnitude. Amplitude of masker-evoked response was seen to be a monotonic or non-monotonic function of ITD. The non-monotonic response exhibited a sensitivity to the interaural phase differences when in-phase and out-of-phase maskers were presented, and showed the tendency to be periodic function of ITD in the expanded range of ITD values. Phase-sensitive responses differed in recovery time following the in-phase and out-of-phase masking stimuli. At near-threshold levels of a forward masker an enhancement of the probe-evoked response was observed.  相似文献   

8.
We are constantly exposed to a mixture of sounds of which only few are important to consider. In order to improve detectability and to segregate important sounds from less important sounds, the auditory system uses different aspects of natural sound sources. Among these are (a) its specific location and (b) synchronous envelope fluctuations in different frequency regions. Such a comodulation of different frequency bands facilitates the detection of tones in noise, a phenomenon known as comodulation masking release (CMR). Physiological as well as psychoacoustical studies usually investigate only one of these strategies to segregate sounds. Here we present psychoacoustical data on CMR for various virtual locations of the signal by varying its interaural phase difference (IPD). The results indicate that the masking release in conditions with binaural (interaural phase differences) and across-frequency (synchronous envelope fluctuations, i.e. comodulation) cues present is equal to the sum of the masking releases for each of the cues separately. Data and model predictions with a simplified model of the auditory system indicate an independent and serial processing of binaural cues and monaural across-frequency cues, maximizing the benefits from the envelope comparison across frequency and the comparison of fine structure across ears.
Bastian EppEmail:
  相似文献   

9.
For a gleaning bat hunting prey from the ground, rustling sounds generated by prey movements are essential to invoke a hunting behaviour. The detection of prey-generated rustling sounds may depend heavily on the time structure of the prey-generated and the masking sounds due to their spectral similarity. Here, we systematically investigate the effect of the temporal structure on psychophysical rustling-sound detection in the gleaning bat, Megaderma lyra. A recorded rustling sound serves as the signal; the maskers are either Gaussian noise or broadband noise with various degrees of envelope fluctuations. Exploratory experiments indicate that the selective manipulation of the temporal structure of the rustling sound does not influence its detection in a Gaussian-noise masker. The results of the main experiment show, however, that the temporal structure of the masker has a strong and systematic effect on rustling-sound detection: When the width of irregularly spaced gaps in the masker exceeded about 0.3 ms, rustling-sound detection improved monotonically with increasing gap duration. Computer simulations of this experiment reveal that a combined detection strategy of spectral and temporal analysis underlies rustling-sound detection with fluctuating masking sounds.  相似文献   

10.
The detection of a change in the modulation pattern of a (target) carrier frequency, fc (for example a change in the depth of amplitude or frequency modulation, AM or FM) can be adversely affected by the presence of other modulated sounds (maskers) at frequencies remote from fc, an effect called modulation discrimination interference (MDI). MDI cannot be explained in terms of interaction of the sounds in the peripheral auditory system. It may result partly from a tendency for sounds which are modulated in a similar way to be perceptually 'grouped', i.e. heard as a single sound. To test this idea, MDI for the detection of a change in AM depth was measured as a function of stimulus variables known to affect perceptual grouping, namely overall duration and onset and offset asynchrony between the masking and target sounds. In parallel experiments, subjects were presented with a series of pairs of sounds, the target alone and the target with maskers, and were asked to rate how clearly the modulation of the target could be heard in the complex mixture. The results suggest that two factors contribute to MDI. One factor is difficulty in hearing a pitch corresponding to the target frequency. This factor appears to be strongly affected by perceptual grouping. Its effects can be reduced or abolished by asynchronous gating of the target and masker. The second factor is a specific difficulty in hearing the modulation of the target, or in distinguishing that modulation from the modulation of other sounds that are present. This factor has effects even under conditions promoting perceptual segregation of the target and masker.  相似文献   

11.
The effect of release from masking in unit activity of the inferior colliculus was studied in anesthetized cats. When series of cophasic and antiphasic clicks with varied interaural delay were used as stimuli, sensitivity to changes in the interaural phase shift within a narrow band of the spectrum of the signal close to the characteristic frequency was discovered in neurons with low characteristic frequencies (up to 2.6 kHz). The masking effect with cophasic and antiphasic noise was found to depend on the phase sensitivity of the neurons. The neurophysiological mechanisms of the release from masking effect are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 463–468, July–August, 1985.  相似文献   

12.
The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels.  相似文献   

13.
Previous studies in the inferior colliculus have shown that spatial separation of signal and noise sources improves signal detection. In this study, we investigated the free-field unmasking response properties of single fibers in the auditory nerve--these were compared to those of inferior colliculus neurons under the same experimental conditions to test the hypothesis that central processing confers advantages for signal detection in the presence of spatially separated noise. For each neuron, we determined the detection threshold for a probe at the unit's best azimuth under three conditions: (1) by itself, (2) when a masker at a constant level was also presented at the unit's best azimuth, and (3) when the masker was positioned at different azimuths. We found that, on average, maskers presented at a unit's best azimuth elevated the probe detection threshold by 4.22 dB in the auditory nerve and 10.97 dB in the inferior colliculus. Angular separation of probe and masker sources systematically reduced the masking effect. The maximum masking release was on average 2.90 dB for auditory nerve fibers and 9.40 dB for inferior colliculus units. These results support the working hypothesis, suggesting that central processing contributes to the stronger free-field unmasking in the inferior colliculus.  相似文献   

14.
Temporal summation was estimated by measuring the detection thresholds for pulses with durations of 1–50 ms in the presence of noise maskers. The purpose of the study was to examine the effects of the spectral profiles and intensities of noise maskers on temporal summation, to investigate the appearance of signs of peripheral processing of pulses with various frequency-time structures in auditory responses, and to test the opportunity to use temporal summation for speech recognition. The central frequencies of pulses and maskers were similar. The maskers had ripple structures of the amplitude spectra of two types. In some maskers, the central frequencies coincided with the spectrum humps, whereas in other maskers, they coincided with spectrum dip (so-called on- and off-maskers). When the auditory system differentiated the masker humps, then the difference between the thresholds of recognition of the stimuli presented together with each of two types of maskers was not equal to zero. The assessment of temporal summation and the difference of the thresholds of pulse recognition under conditions of the presentation of the on- and off-maskers allowed us to make a conclusion on auditory sensitivity and the resolution of the spectral structure of maskers or frequency selectivity during presentation of pulses of various durations in local frequency areas. In order to estimate the effect of the dynamic properties of hearing on sensitivity and frequency selectivity, we changed the intensity of maskers. We measured temporal summation under the conditions of the presentation of on- and off-maskers of various intensities in two frequency ranges (2 and 4 kHz) in four subjects with normal hearing and one person with age-related hearing impairments who complained of a decrease in speech recognition under noise conditions. Pulses shorter than 10 ms were considered as simple models of consonant sounds, whereas tone pulses longer than 10 ms were considered as simple models of vowel sounds. In subjects with normal hearing in the range of moderate masker intensities, we observed an enhancement of temporal summation when the short pulses or consonant sounds were presented and an improvement of the resolution of the broken structure of masker spectra when the short and tone pulses, i.e., consonant and vowel sounds, were presented. We supposed that the enhancement of the summation was related to the refractoriness of the fibers of the auditory nerve. In the range of 4 kHz, the subject with age-related hearing impairments did not recognize the ripple structure of the maskers in the presence of the short pulses or consonant sounds. We supposed that these impairments were caused by abnormal synchronization of the responses of the auditory nerve fibers induced by the pulses, and this resulted in a decrease in speech recognition.  相似文献   

15.
Our ability to detect target sounds in complex acoustic backgrounds is often limited not by the ear's resolution, but by the brain's information-processing capacity. The neural mechanisms and loci of this “informational masking” are unknown. We combined magnetoencephalography with simultaneous behavioral measures in humans to investigate neural correlates of informational masking and auditory perceptual awareness in the auditory cortex. Cortical responses were sorted according to whether or not target sounds were detected by the listener in a complex, randomly varying multi-tone background known to produce informational masking. Detected target sounds elicited a prominent, long-latency response (50–250 ms), whereas undetected targets did not. In contrast, both detected and undetected targets produced equally robust auditory middle-latency, steady-state responses, presumably from the primary auditory cortex. These findings indicate that neural correlates of auditory awareness in informational masking emerge between early and late stages of processing within the auditory cortex.  相似文献   

16.
In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding.  相似文献   

17.
Barn owls use interaural intensity differences to localize sounds in the vertical plane. At a given elevation the magnitude of the interaural intensity difference cue varies with frequency, creating an interaural intensity difference spectrum of cues which is characteristic of that direction. To test whether space-specific cells are sensitive to spectral interaural intensity difference cues, pure-tone interaural intensity difference tuning curves were taken at multiple different frequencies for single neurons in the external nucleus of the inferior colliculus. For a given neuron, the interaural intensity differences eliciting the maximum response (the best interaural intensity differences) changed with the frequency of the stimulus by an average maximal difference of 9.4±6.2 dB. The resulting spectral patterns of these neurally preferred interaural intensity differences exhibited a high degree of similarity to the acoustic interaural intensity difference spectra characteristic of restricted regions in space. Compared to stimuli whose interaural intensity difference spectra matched the preferred spectra, stimuli with inverted spectra elicited a smaller response, showing that space-specific neurons are sensitive to the shape of the spectrum. The underlying mechanism is an inhibition for frequency-specific interaural intensity differences which differ from the preferred spectral pattern. Collectively, these data show that space-specific neurons are sensitive to spectral interaural intensity difference cues and support the idea that behaving barn owls use such cues to precisely localize sounds.Abbreviations ABI average binaural intensity - HRTF head-related transfer function - ICx external nucleus of the inferior colliculus - IID interaural intensity difference - ITD interaural time difference - OT optic tectum - RMS root mean square - VLVp nucleus ventralis lemnisci laterale, pars posterior  相似文献   

18.
When two tones are presented in a short time interval, the response to the second tone is suppressed. This phenomenon is referred to as forward suppression. To address the effect of the masker laterality on forward suppression, magnetoencephalographic responses were investigated for eight subjects with normal hearing when the preceding maskers were presented ipsilaterally, contralaterally, and binaurally. We employed three masker intensity conditions: the ipsilateral-strong, left-right-balanced, and contralateral-strong conditions. Regarding the responses to the maskers without signal, the N1m amplitude evoked by the left and binaural maskers was significantly larger than that evoked by the right masker for the left-strong and left-right-balanced conditions. No significant difference was observed for the right-strong condition. Regarding the subsequent N1m amplitudes, they were attenuated by the presence of the left, binaural, and right maskers for all conditions. For the left- and right-strong conditions, the subsequent N1m amplitude in the presence of the left masker was smaller than those of the binaural and right maskers. No difference was observed between the binaural and right masker presentation. For left-right-balanced condition, the subsequent N1m amplitude decreased in the presence of the right, binaural, and left maskers in that order. If the preceding activity reflected the ability to suppress the subsequent activity, the forward suppression by the left masker would be superior to that by the right masker for the left-strong and left-right-balanced conditions. Furthermore, the forward suppression by the binaural masker would be expected to be superior to that by the left masker owing to additional afferent activity from the right ear. Thus, the current results suggest that the forward suppression by ipsilateral maskers is superior to that by contralateral maskers although both maskers evoked the N1m amplitudes to the same degree. Additional masker at the contralateral ear can attenuate the forward suppression by the ipsilateral masker.  相似文献   

19.
Current hypotheses suggest that speech segmentation—the initial division and grouping of the speech stream into candidate phrases, syllables, and phonemes for further linguistic processing—is executed by a hierarchy of oscillators in auditory cortex. Theta (∼3-12 Hz) rhythms play a key role by phase-locking to recurring acoustic features marking syllable boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip below cortical theta frequencies (down to ∼1 Hz), requires “flexible” theta oscillators whose underlying neuronal mechanisms remain unknown. Using biophysical computational models, we found that the flexibility of phase-locking in neural oscillators depended on the types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic currents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-locking enabled improved entrainment to speech input, optimal at mid-vocalic channels, which in turn supported syllabic-timescale segmentation through identification of vocalic nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-restricted and -flexible phase-locking in neural oscillators, respectively. Their differential deployment may enable neural oscillators to play diverse roles, from reliable internal clocking to adaptive segmentation of quasi-regular sensory inputs like speech.  相似文献   

20.
Schmidt AK  Römer H 《PloS one》2011,6(12):e28593

Background

Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured.

Principal Findings

Using neurophysiological methods we investigated the effect of natural background noise (masker) on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three ‘bottom-up’ mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR) of −8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about −23 dB compared with those in the laboratory with the same masker, where SNRs reached only −14.5 and −16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals.

Conclusions

Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the detrimental effect of noise may be strongly overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号