首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
3.

Objective

The SLC30A8 gene encodes the islet-specific transporter ZnT-8, which is hypothesized to provide zinc for insulin-crystal formation. A polymorphic variant in SLC30A8 is associated with altered susceptibility to type 2 diabetes. Several groups have examined the effect of global Slc30a8 gene deletion but the results have been highly variable, perhaps due to the mixed 129SvEv/C57BL/6J genetic background of the mice studied. We therefore sought to remove the conflicting effect of 129SvEv-specific modifier genes.

Methods

The impact of Slc30a8 deletion was examined in the context of the pure C57BL/6J genetic background.

Results

Male C57BL/6J Slc30a8 knockout (KO) mice had normal fasting insulin levels and no change in glucose-stimulated insulin secretion (GSIS) from isolated islets in marked contrast to the ∼50% and ∼35% decrease, respectively, in both parameters observed in male mixed genetic background Slc30a8 KO mice. This observation suggests that 129SvEv-specific modifier genes modulate the impact of Slc30a8 deletion. In contrast, female C57BL/6J Slc30a8 KO mice had reduced (∼20%) fasting insulin levels, though this was not associated with a change in fasting blood glucose (FBG), or GSIS from isolated islets. This observation indicates that gender also modulates the impact of Slc30a8 deletion, though the physiological explanation as to why impaired insulin secretion is not accompanied by elevated FBG is unclear. Neither male nor female C57BL/6J Slc30a8 KO mice showed impaired glucose tolerance.

Conclusions

Our data suggest that, despite a marked reduction in islet zinc content, the absence of ZnT-8 does not have a substantial impact on mouse physiology.  相似文献   

4.
The Na+-dependent transport of neutral amino acids in epithelial cells and neurons is mediated by B0-type neutral amino acid transporters. Two B0-type amino acid transporters have been identified in the neurotransmitter transporter family SLC6, namely B0AT1 (SLC6A19) and B0AT2 (SLC6A15). In contrast to other members of this family, B0-like transporters are chloride-independent. B0AT1 and B0AT2 preferentially bind the substrate prior to the Na+-ion. The Na+-concentration affects the K m of the substrate and vice versa. A kinetic scheme is proposed that is consistent with the experimental data. An overlapping binding site of substrate and cosubstrate has been demonstrated in the bacterial orthologue LeuT Aa from Aquifex aeolicus, which elegantly explains the mutual effect of substrate and cosubstrate on each other’s K m -value. LeuT Aa is sequence-related to transporters of the SLC6 family, allowing homology modeling of B0-like transporters along its structure.  相似文献   

5.
Cystinuria is an autosomal recessive disease caused by the mutation of either SLC3A1 gene encoding for rBAT (type A cystinuria) or SLC7A9 gene encoding for b0,+AT (type B cystinuria). Here, we evidenced in a commonly used congenic 129S2/SvPasCrl mouse substrain a dramatically high frequency of kidney stones that were similar to those of patients with cystinuria. Most of 129S2/SvPasCrl exhibited pathognomonic cystine crystals in urine and an aminoaciduria profile similar to that of patients with cystinuria. In addition, we observed a heterogeneous inflammatory infiltrate and cystine tubular casts in the kidney of cystinuric mice. As compared to another classical mouse strain, C57BL/6J mice, 129S2/SvPasCrl mice had an increased mortality associated with bilateral obstructive hydronephrosis. In 129S2/SvPasCrl mice, the heavy subunit rBAT of the tetrameric transporter of dibasic amino acids was absent in proximal tubules and we identified a single pathogenic mutation in a highly conserved region of the Slc3a1 gene. This novel mouse model mimicking human disease would allow us further pathophysiological studies and may be useful to analyse the crystal/tissue interactions in cystinuria.  相似文献   

6.
Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1 -/- with Slc7a9 -/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9 +/- Slc3a1 +/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9 +/- Slc3a1 +/+ and Slc7a9 +/+ Slc3a1 +/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients.  相似文献   

7.
SLC30A8 encodes a zinc transporter ZnT8 largely restricted to pancreatic islet β- and α-cells, and responsible for zinc accumulation into secretory granules. Although common SLC30A8 variants, believed to reduce ZnT8 activity, increase type 2 diabetes risk in humans, rare inactivating mutations are protective. To investigate the role of Slc30a8 in the control of glucagon secretion, Slc30a8 was inactivated selectively in α-cells by crossing mice with alleles floxed at exon 1 to animals expressing Cre recombinase under the pre-proglucagon promoter. Further crossing to Rosa26:tdRFP mice, and sorting of RFP+: glucagon+ cells from KO mice, revealed recombination in ∼30% of α-cells, of which ∼50% were ZnT8-negative (14 ± 1.8% of all α-cells). Although glucose and insulin tolerance were normal, female αZnT8KO mice required lower glucose infusion rates during hypoglycemic clamps and displayed enhanced glucagon release (p < 0.001) versus WT mice. Correspondingly, islets isolated from αZnT8KO mice secreted more glucagon at 1 mm glucose, but not 17 mm glucose, than WT controls (n = 5; p = 0.008). Although the expression of other ZnT family members was unchanged, cytoplasmic (n = 4 mice per genotype; p < 0.0001) and granular (n = 3, p < 0.01) free Zn2+ levels were significantly lower in KO α-cells versus control cells. In response to low glucose, the amplitude and frequency of intracellular Ca2+ increases were unchanged in α-cells of αZnT8KO KO mice. ZnT8 is thus important in a subset of α-cells for normal responses to hypoglycemia and acts via Ca2+-independent mechanisms.  相似文献   

8.
Mutations in the SLC26A4 gene are a common cause of human hereditary hearing impairment worldwide. Previous studies have demonstrated that different SLC26A4 mutations have different pathogenetic mechanisms. By using a genotype-driven approach, we established a knock-in mouse model (i.e., Slc26a4tm2Dontuh/tm2Dontuh mice) homozygous for the common p.H723R mutation in the East Asian population. To verify the pathogenicity of the p.H723R allele in mice, we further generated mice with compound heterozygous mutations (i.e., Slc26a4tm1Dontuh/tm2Dontuh) by intercrossing Slc26a4+/tm2Dontuh mice with Slc26a4tm1Dontuh/tm1Dontuh mice, which segregated the c.919-2A>G mutation with an abolished Slc26a4 function. Mice were then subjected to audiologic assessments, a battery of vestibular evaluations, inner ear morphological studies, and noise exposure experiments. The results were unexpected; both Slc26a4tm2Dontuh/tm2Dontuh and Slc26a4tm1Dontuh/tm2Dontuh mice showed normal audiovestibular phenotypes and inner ear morphology, and they did not show significantly higher shifts in hearing thresholds after noise exposure than the wild-type mice. The results indicated not only the p.H723R allele was non-pathogenic in mice, but also a single p.H723R allele was sufficient to maintain normal inner ear physiology in heterozygous compound mice. There might be discrepancies in the pathogenicity of specific SLC26A4 mutations in humans and mice; therefore, precautions should be taken when extrapolating the results of animal studies to humans.  相似文献   

9.
The SLC6A19 is a human homolog of B0AT1 that encodes a neutral amino acid transporter. We examined the distribution of VNTR (variable number of tandem repeats; minisatellites) and conducted polymorphic analysis of SCL6A19 isolated from the genomic DNA of controls and multi-generational families. The SLC6A19 was found to contain seven blocks of minisatellites, 3 of which (SLC6A19-MS1, -MS4, and -MS7) showed polymorphism and were found to be transmitted through meiosis following Mendelian inheritance in seven families. These minisatellite polymorphisms may be useful markers for paternity mapping and DNA fingerprinting. Furthermore, we conducted a case-control study in which genomic DNA from 400 controls and 205 cases with essential hypertension was compared. A statistically significant association was identified between rare SLC6A19-MS7 alleles and the occurrence of hypertension (odds ratio, 7.87; 95% confidence interval, 0.88-70.66; and p = 0.028). These findings suggest that the rare SLC6A19-MS7 allele may be a risk factor for hypertension.  相似文献   

10.
Creatine transporter (CrT; SLC6A8) deficiency (CTD) is an X‐linked disorder characterized by severe cognitive deficits, impairments in language and an absence of brain creatine (Cr). In a previous study, we generated floxed Slc6a8 (Slc6a8 flox) mice to create ubiquitous Slc6a8 knockout (Slc6a8?/y) mice. Slc6a8?/y mice lacked whole body Cr and exhibited cognitive deficits. While Slc6a8?/y mice have a similar biochemical phenotype to CTD patients, they also showed a reduction in size and reductions in swim speed that may have contributed to the observed deficits. To address this, we created brain‐specific Slc6a8 knockout (bKO) mice by crossing Slc6a8flox mice with Nestin‐cre mice. bKO mice had reduced cerebral Cr levels while maintaining normal Cr levels in peripheral tissue. Interestingly, brain concentrations of the Cr synthesis precursor guanidinoacetic acid were increased in bKO mice. bKO mice had longer latencies and path lengths in the Morris water maze, without reductions in swim speed. In accordance with data from Slc6a8 ?/y mice, bKO mice showed deficits in novel object recognition as well as contextual and cued fear conditioning. bKO mice were also hyperactive, in contrast with data from the Slc6a8 ?/y mice. The results show that the loss of cerebral Cr is responsible for the learning and memory deficits seen in ubiquitous Slc6a8?/y mice.  相似文献   

11.
Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2 -/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.  相似文献   

12.
Genetic selection strategies towards increased prolificacy have resulted in more and more increased littler size and incidences of impaired fetal development. Low birth weight (LBW) piglets, with long-term alterations in structure, physiology and metabolism, have lower survival rates and poor growth performance. The aim of the study was to compare the plasma, liver and skeletal muscle contents of neutral amino acids (NAA) and the intestinal expression of NAA transporters between LBW and high birth weight (HBW) suckling Huanjiang mini-piglets. Forty piglets with either LBW or HBW (20 piglets per group) were sampled on day 0, 7, 14 and 21 of age to give 5 observations per day per group. The contents of NAA in plasma, liver and skeletal muscle were measured, and jejunal expression of transporters for NAA, including Slc6a19 (B0AT1) and Slc1a5 (ASCT2), were determined by real-time RT-PCR and Western Blot, respectively. Results showed that the suckling piglets with LBW had higher contents of Thr, Ser, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe and Pro in liver, and Gly in skeletal muscle, whereas lower contents of Met, Ser and Ala in plasma when compared with the HBW littermates. Consistent with the content differences in plasma NAA, the jejunal expression profiles of both Slc6a19 (B0AT1) and Slc1a5 (ASCT2) in the LBW piglets were lower in compared with the HBW littermates during the early suckling period. These findings suggested that intestinal dysfunction in the LBW piglets may be one of the reasons in altered physiology and metabolism states of other organs, which result in lower survival and growth rate.  相似文献   

13.
14.
Physiological function and metabolic regulation are the most important outputs of circadian clock controls in mammals. Mitochondrial respiration and ROS production show rhythmic activity. Mitochondrial carriers, which are responsible for mitochondrial substance transfer, are vital for mitochondrial metabolism. Clock (Circadian Locomotor Output Cycles Kaput) is the first core circadian gene identified in mammalian animals. However, whether CLOCK protein can regulate mitochondrial functions via mitochondrial carriers is unclear. Here, we showed that CLOCK can bind to the mitochondrial carrier SLC25A10. For further analysis, we established a Slc25a10−/−-Hepa1-6 cell line using CRISPR/Cas9 gene-editing technology. Slc25a10−/−-Hepa1-6 cells showed disordered glucose homeostasis, increased oxidative stress levels, and damaged electron transport chains. Next, using an immunoprecipitation assay, we found that amino acids 43–84 and 169–210 in SLC25A10 are key sites that respond to CLOCK binding. Finally, forced expression of wild-type SLC25A10 in Slc25a10−/−-Hepa1-6 cells could compensate for the loss of SLC25A10; the decreased glucose metabolism, severe oxidative stress and damaged electron transport chain were recovered. In addition, a mutant Slc25a10 with changes in two key sites did not show a rescue effect. In conclusion, we identified a new protein-protein interaction mechanism in which CLOCK can directly regulate cell metabolism via the mitochondrial membrane transporter SLC25A10. Our study might provide some new insights into the relationship between circadian clock and mitochondrial metabolism.  相似文献   

15.
A crippling dwarfism was first described in the Miniature Poodle in Great Britain in 1956. Here, we resolve the genetic basis of this recessively inherited disorder. A case-control analysis (8∶8) of genotype data from 173 k SNPs revealed a single associated locus on CFA14 (Praw <10–8). All affected dogs were homozygous for an ancestral haplotype consistent with a founder effect and an identical-by-descent mutation. Systematic failure of nine, nearly contiguous SNPs, was observed solely in affected dogs, suggesting a deletion was the causal mutation. A 130-kb deletion was confirmed both by fluorescence in situ hybridization (FISH) analysis and by cloning the physical breakpoints. The mutation was perfectly associated in all cases and obligate heterozygotes. The deletion ablated all but the first exon of SLC13A1, a sodium/sulfate symporter responsible for regulating serum levels of inorganic sulfate. Our results corroborate earlier findings from an Slc13a1 mouse knockout, which resulted in hyposulfatemia and syndromic defects. Interestingly, the metabolic disorder in Miniature Poodles appears to share more clinical signs with a spectrum of human disorders caused by SLC26A2 than with the mouse Slc13a1 model. SLC26A2 is the primary sodium-independent sulfate transporter in cartilage and bone and is important for the sulfation of proteoglycans such as aggregan. We propose that disruption of SLC13A1 in the dog similarly causes undersulfation of proteoglycans in the extracellular matrix (ECM), which impacts the conversion of cartilage to bone. A co-dominant DNA test of the deletion was developed to enable breeders to avoid producing affected dogs and to selectively eliminate the mutation from the gene pool.  相似文献   

16.
SLC26 proteins function as anion exchangers, channels, and sensors. Previous cellular studies have shown that Slc26a3 and Slc26a6 interact with the R-region of the cystic fibrosis transmembrane conductance regulator (CFTR), (R)CFTR, via the Slc26-STAS (sulfate transporter anti-sigma) domain, resulting in mutual transport activation. We recently showed that Slc26a9 has both nCl-HCO3 exchanger and Cl channel function. In this study, we show that the purified STAS domain of Slc26a9 (a9STAS) binds purified (R)CFTR. When Slc26a9 and (R)CFTR fragments are co-expressed in Xenopus oocytes, both Slc26a9-mediated nCl-HCO3 exchange and Cl currents are almost fully inhibited. Deletion of the Slc26a9 STAS domain (a9-ΔSTAS) virtually eliminated the Cl currents with only a modest affect on nCl-HCO3 exchange activity. Co-expression of a9-ΔSTAS and the (R)CFTR fragment did not alter the residual a9-ΔSTAS function. Replacing the Slc26a9 STAS domain with the Slc26a6 STAS domain (a6-a9-a6) does not change Slc26a9 function and is no longer inhibited by (R)CFTR. These data indicate that the Slc26a9-STAS domain, like other Slc26-STAS domains, binds CFTR in the R-region. However, unlike previously reported data, this binding interaction inhibits Slc26a9 ion transport activity. These results imply that Slc26-STAS domains may all interact with (R)CFTR but that the physiological outcome is specific to differing Slc26 proteins, allowing for dynamic and acute fine tuning of ion transport for various epithelia.Slc26 genes and proteins have attracted the attention of physiologists and geneticists. Why? Slc26a1 (Sat-1) was characterized as a Na+-independent SO42− transporter (1). Given the transport characteristics of the founding member of the gene family, Slc26 proteins were assumed to be sulfate transporters. Disease phenotypes, clone characterization, and family additions demonstrate that the Slc26 proteins are anion transporters or channels (24). These proteins have varied tissue expression patterns. At one extreme, Slc26a5 in mammals is found in the hair cells of the inner ear (5), whereas Slc26a2 (DTDST) is virtually ubiquitous in epithelial tissues (2).Several Slc26 proteins are found in the epithelia of the lung, intestine, stomach, pancreas, and kidney, usually in apical membranes. Interestingly these are also tissues and membranes in which the cystic fibrosis transmembrane conductance regulator (CFTR)5 has been found functionally or by immunohistochemistry. Ko and co-workers (68) examined the distribution of Slc26a3 and Slc26a6 in HCO3 secretory epithelia, and asked if an interaction might occur between these Slc26 proteins and CFTR. In particular, these studies indicate that in expression systems, there is a reciprocal-stimulatory interaction of the STAS (sulfate transporter anti-sigma) domains of Slc26a3 and Slc26a6 with the regulatory region (R-region) of CFTR. These investigators hypothesized that this stimulatory interaction could account for the differences in pancreatic insufficiency and sufficiency observed in cystic fibrosis patients. Nevertheless, knock-out Slc26a6 mouse studies reveal more complicated cell and tissue physiology (see “Discussion”).Slc26a9 has been reported to be a Cl-HCO3 exchanger (9, 10) or a large Cl conductance (3, 11, 12). Loriol and co-workers (12) indicated that SLC26A9 has a Cl conductance that may be stimulated by HCO3. Two other groups have indicated that the Cl conductance is not affected by the presence of HCO3 (10, 11). We have recently demonstrated that Slc26a9 functions as both an electrogenic nCl-HCO3 exchanger and a Cl channel (10). Dorwart and colleagues (11) found that WNK kinases inhibited the SLC26A9 Cl conductance but that this effect was independent of kinase activity. One group has a preliminary report indicating that WNK3 decreased Cl uptake, whereas WNK4 increased Cl uptake via Slc26a9 expressed in Xenopus oocytes (13).Slc26a9 and CFTR are also co-expressed in several tissues. Slc26a9 protein has been localized to epithelia of the stomach and lung (9, 10, 14), although mRNA is also detectable in brain, heart, kidney, small intestine, thymus, and ovary (10). The R-region of CFTR was previously shown to increase the activity of Slc26a3 and Slc26a6 by interaction with STAS domains (6, 15, 16). Because Slc26a9 displays several different modes of ion transport, we asked if the R-region of CFTR would also increase the activity of Slc26a9. Our results indicate that the R-region of CFTR does interact with the STAS domain of Slc26a9. However, in the case of Slc26a9 this apparently similar interaction results in inhibition of Slc26a9 ion transport.  相似文献   

17.
Transporters in the human genome are grouped in solute carrier families (SLC). The SLC6 family is one of the biggest transporter families in the human genome comprising 20 members. It is usually referred to as the neurotransmitter transporter family because its founding members encode transporters for the neurotransmitters GABA, noradrenaline, serotonin and dopamine. The family also includes a number of 'orphan' transporters, the function of which has remained elusive until recently. Identification of the broadly specific neutral amino acid transporter SLC6A19 (also called B(0)AT1) suggested that all orphan transporters may in fact be amino acid transporters. This was subsequently confirmed by the identification of SLC6A20 as the long-sought IMINO system, a proline transporter found in kidney, intestine and brain. Very recently, SLC6A15 was identified as the neutral amino acid transporter B(0)AT2. All amino acid transporters appear to cotransport only 1Na(+) together with the amino acid substrate. Both, B(0)AT1 and B(0)AT2 are chloride independent, whereas IMINO is chloride dependent. The amino acid transporters of the SLC6 family are functionally and sequence related to the recently crystallized leucine transporter from Aquifex aeolicus. The structure elegantly explains many of the mechanistic features of the SLC6 amino acid transporters.  相似文献   

18.
NaBC1 (the SLC4A11 gene) belongs to the SLC4 family of sodium-coupled bicarbonate (carbonate) transporter proteins and functions as an electrogenic sodium borate cotransporter. Mutations in SLC4A11 cause either corneal abnormalities (corneal hereditary dystrophy type 2) or a combined auditory and visual impairment (Harboyan syndrome). The role of NaBC1 in sensory systems is poorly understood, given the difficulty of studying patients with NaBC1 mutations. We report our findings in Slc4a11−/− mice generated to investigate the role of NaBC1 in sensorineural systems. In wild-type mice, specific NaBC1 immunoreactivity was detected in fibrocytes of the spiral ligament, from the basal to the apical portion of the cochlea. NaBC1 immunoreactivity was present in the vestibular labyrinth, in stromal cells underneath the non-immunoreactive sensory epithelia of the macula utricle, sacule, and crista ampullaris, and the membranous vestibular labyrinth was collapsed. Both auditory brain response and vestibular evoked potential waveforms were significantly abnormal in Slc4a11−/− mice. In the cornea, NaBC1 was highly expressed in the endothelial cell layer with less staining in epithelial cells. However, unlike humans, the corneal phenotype was mild with a normal slit lamp evaluation. Corneal endothelial cells were morphologically normal; however, both the absolute height of the corneal basal epithelial cells and the relative basal epithelial cell/total corneal thickness were significantly increased in Slc4a11−/− mice. Our results demonstrate for the first time the importance of NaBC1 in the audio-vestibular system and provide support for the hypothesis that SLC4A11 should be considered a potential candidate gene in patients with isolated sensorineural vestibular hearing abnormalities.The SLC4 transporter family consists of proteins that mediate bicarbonate (carbonate) transport and include Cl-HCO3 exchangers, Na/HCO3 cotransporters, and sodium-driven Cl-HCO3 exchangers (1). A single member of the family encoded by the SLC4A11 gene does not transport bicarbonate (carbonate) (2, 3). On the basis of sequence homology with other members of the SLC4 family, the protein encoded by SLC4A11 was initially called BTR1 (bicarbonate transporter 1) (2). Subsequently, motivated by its homology with the borate transporter BOR1 in Arabidopsis (4), experiments by Park et al. (3) reported that the transporter functioned in the presence of borate as an electrogenic sodium-borate cotransporter and was renamed NaBC1.Mutations in the SLC4A11 gene are responsible for corneal hereditary dystrophy type 2 (CHED2)4 and Harboyan syndrome (514). In addition to corneal dystrophy, patients with Harboyan syndrome have perceptive hearing loss and nystagmus (7, 14). Whether all patients with CHED2 have undiagnosed hearing abnormalities is currently unknown. Heterozygous single nucleotide polymorphisms for SLC4A11 have also been identified in Chinese and Indian patients with Fuchs dystrophy, the most common dystrophic cause of endothelial failure in the adult population. However, the mutations in the SLC4A11 gene may only be responsible for about 5% of Fuchs cases, and causality has not yet been firmly established (13). No patients with SLC4A11 mutations have been described with isolated hearing abnormalities. Moreover, whether NaBC1 plays a role in the vestibular system is unknown. Currently, the cellular targets and mechanisms, which have led to altered corneal and/or auditory function or development, have not been elucidated. To examine the role of NaBC1 in sensorineural tissues more precisely in a mammalian model system, we generated Slc4a11−/− mice and examined the histologic and functional abnormalities associated with the loss of NaBC1 expression.  相似文献   

19.
SLC5A8 is a putative tumor suppressor that is inactivated in more than 10 different types of cancer, but neither the oncogenic signaling responsible for SLC5A8 inactivation nor the functional relevance of SLC5A8 loss to tumor growth has been elucidated. Here, we identify oncogenic HRAS (HRASG12V) as a potent mediator of SLC5A8 silencing in human nontransformed normal mammary epithelial cell lines and in mouse mammary tumors through DNMT1. Further, we demonstrate that loss of Slc5a8 increases cancer-initiating stem cell formation and promotes mammary tumorigenesis and lung metastasis in an HRAS-driven murine model of mammary tumors. Mammary-gland-specific overexpression of Slc5a8 (mouse mammary tumor virus-Slc5a8 transgenic mice), as well as induction of endogenous Slc5a8 in mice with inhibitors of DNA methylation, protects against HRAS-driven mammary tumors. Collectively, our results provide the tumor-suppressive role of SLC5A8 and identify the oncogenic HRAS as a mediator of tumor-associated silencing of this tumor suppressor in mammary glands. These findings suggest that pharmacological approaches to reactivate SLC5A8 expression in tumor cells have potential as a novel therapeutic strategy for breast cancer treatment.  相似文献   

20.
Several members of the SLC26 gene family have highly-restricted expression patterns in the auditory and vestibular periphery and mutations in mice of at least two of these (SLC26A4 and SLC26A5) lead to deficits in hearing and/or balance. A previous report pointed to SLC26A7 as a candidate gene important for cochlear function. In the present study, inner ears were assayed by immunostaining for Slc26a7 in neonatal and adult mice. Slc26a7 was detected in the basolateral membrane of Reissner’s membrane epithelial cells but not neighboring cells, with an onset of expression at P5; gene knockout resulted in the absence of protein expression in Reissner’s membrane. Whole-cell patch clamp recordings revealed anion currents and conductances that were elevated for NO3 over Cl and inhibited by I and NPPB. Elevated NO3 currents were absent in Slc26a7 knockout mice. There were, however, no major changes to hearing (auditory brainstem response) of knockout mice during early adult life under constitutive and noise exposure conditions. The lack of Slc26a7 protein expression found in the wild-type vestibular labyrinth was consistent with the observation of normal balance. We conclude that SLC26A7 participates in Cl transport in Reissner’s membrane epithelial cells, but that either other anion pathways, such as ClC-2, possibly substitute satisfactorily under the conditions tested or that Cl conductance in these cells is not critical to cochlear function. The involvement of SLC26A7 in cellular pH regulation in other epithelial cells leaves open the possibility that SLC26A7 is needed in Reissner’s membrane cells during local perturbations of pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号