首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological evolution and abiogenesis are distinct branches of science, although they are closely related in the context of a holistic evolutionary conceptual framework. The relationship between evolution and abiogenesis furnishes profound insights into the nature of science, a much emphasised aspect of modern science education. But there appears to be a great deal of ambiguity about the place of abiogenesis in upper secondary curricula, being the stage of formal education at which students are usually first exposed to evolutionary theory in any depth. Some official curricula completely omit any reference to the issue, others fleetingly touch on it, and yet others fully incorporate it. This paper argues that abiogenesis should be included in upper secondary biology curricula, but that students need to be made aware of the distinctions between chemical and biological evolutionary theories.  相似文献   

2.
To Darwin, parasites were fascinating examples of adaptation but their significance as selective factors for a wide range of phenomena has only been studied in depth over the last few decades. This work has had its roots in behavioural/evolutionary ecology on the one hand, and in population biology/ecology on the other, thus shaping a new comprehensive field of ‘evolutionary parasitology’. Taking parasites into account has been a success story and has shed new light on several old questions such as sexual selection, the evolution of sex and recombination, changes in behaviour, adaptive life histories, and so forth. In the process, the topic of ecological immunology has emerged, which analyses immune defences in a framework of costs and benefits. Throughout, a recurrent theme is how to appropriately integrate the underlying mechanisms as evolved boundary conditions into a framework of studying the adaptive value of traits. On the conceptual side, major questions remain and await further study.  相似文献   

3.
张德兴 《生物多样性》2015,23(5):559-31
分子生态学是多学科交叉的整合性研究领域, 是运用进化生物学理论解决宏观生物学问题的科学。经过半个多世纪的发展, 本学科已日趋成熟, 它不仅已经广泛渗透到宏观生物学的众多学科领域, 而且已经成为连接和融合很多不同学科的桥梁, 是目前最具活力的研究领域之一。其研究的范畴, 从最基础的理论和方法技术, 到格局和模式的发现和描述, 到对过程和机制的深入探讨, 再到付诸于实践的行动和规划指导等各个层次。分子生态学的兴起给宏观生物学带来了若干飞跃性的变化, 使宏观生物学由传统的以观察、测量和推理为主的描述性研究转变为以从生物和种群的遗传构成的变化和历史演化背景上检验、证明科学假设及揭示机制和规律为主的机制性/解释性研究, 因而使得对具有普遍意义的科学规律、生态和进化过程及机制的探索成为可能。分子生态学已经进入组学研究时代, 这使得阐明复杂生态过程、生物地理过程和适应性演化过程的机制性研究由原来难以企及的梦想变成完全可以实现的探求; 它也带来了全新的挑战, 其中最有深远影响的将是对分子生态学研究至关重要的进化生物学基础理论方面的突破, 例如遗传变异理论、种群分化理论、表观遗传因素的作用, 乃至进化生物学的基本知识构架等等。这些方面的进展必将使宏观生物学迎来一场空前的革命, 并对生态学的所有分支学科产生重大影响, 甚至催生诸如生态表观组学这样的新分支学科。对于中国科学家来说, 分子生态学组学时代的开启, 更是一个千载难逢的机遇, 为提出和建立生命科学的新方法、新假说、新思想和新理论提供了莫大的探索空间——此前我们对宏观生物学方法、理论和思想的发展贡献很小。然而, 限制组学时代重大突破的关键因素是理论、概念、理念、实验方法或分析方法方面的创新和突破, 这正是我国分子生态学研究最薄弱的环节。我国教育部门应尽快调整生命科学本科生培养的理念和方法, 以培养具备突出创新潜力的年轻一代后备人才; 同时, 科研项目资助部门和研究人员不仅应清醒地认识本学科领域的发展态势, 更要及时调整思路, 树立新的项目管理理念和治学 理念。  相似文献   

4.
5.
Biological insurance theory predicts that, in a variable environment, aggregate ecosystem properties will vary less in more diverse communities because declines in the performance or abundance of some species or phenotypes will be offset, at least partly, by smoother declines or increases in others. During the past two decades, ecology has accumulated strong evidence for the stabilising effect of biodiversity on ecosystem functioning. As biological insurance is reaching the stage of a mature theory, it is critical to revisit and clarify its conceptual foundations to guide future developments, applications and measurements. In this review, we first clarify the connections between the insurance and portfolio concepts that have been used in ecology and the economic concepts that inspired them. Doing so points to gaps and mismatches between ecology and economics that could be filled profitably by new theoretical developments and new management applications. Second, we discuss some fundamental issues in biological insurance theory that have remained unnoticed so far and that emerge from some of its recent applications. In particular, we draw a clear distinction between the two effects embedded in biological insurance theory, i.e. the effects of biodiversity on the mean and variability of ecosystem properties. This distinction allows explicit consideration of trade-offs between the mean and stability of ecosystem processes and services. We also review applications of biological insurance theory in ecosystem management. Finally, we provide a synthetic conceptual framework that unifies the various approaches across disciplines, and we suggest new ways in which biological insurance theory could be extended to address new issues in ecology and ecosystem management. Exciting future challenges include linking the effects of biodiversity on ecosystem functioning and stability, incorporating multiple functions and feedbacks, developing new approaches to partition biodiversity effects across scales, extending biological insurance theory to complex interaction networks, and developing new applications to biodiversity and ecosystem management.  相似文献   

6.
Community ecology entered the 1970s with the belief that niche theory would supply a general theory of community structure. The lack of wide-spread empirical support for niche theory led to a focus on models specific to classes of communities such as lakes, intertidal communities, and forests. Today, the needs of conservation biology for metrics of “ecological health” that can be applied across types of communities prompts a renewed interest in the possibility of general theory for community ecology. Disputes about the existence of general patterns in community structure trace at least to the 1920s and continue today almost unchanged in concept, although now expressed through mathematical modeling. Yet, a new framework emerged in the 1980s from findings that community composition and structure depend as much on the processes that bring species to the boundaries of a community as by processes internal to a community, such as species interactions and co-evolution. This perspective, termed “supply-side ecology”, argued that community ecology was to be viewed as an “organic earth science” more than as a biological science. The absence of a general theory of the earth would then imply a corresponding absence of any general theory for the communities on the earth, and imply that the logical structure of theoretical community ecology would consist of an atlas of models special to place and geologic time. Nonetheless, a general theory of community ecology is possible similar in form to the general theory for evolution if the processes that bring species to the boundary of a community are analogized to mutation, and the processes that act on the species that arrive at a community are analogized to selection. All communities then share some version of this common narrative, permitting general theorems to be developed pertaining to all ecological communities. Still, the desirability of a general theory of community ecology is debatable because the existence of a general theory suppresses diversity of thought even as it allows generalizations to be derived. The pros and cons of a general theory need further discussion.  相似文献   

7.
Through functional analyses, integrative physiology is able to link molecular biology with ecology as well as evolutionary biology and is thereby expected to provide access to the evolution of molecular, cellular, and organismic functions; the genetic basis of adaptability; and the shaping of ecological patterns. This paper compiles several exemplary studies of thermal physiology and ecology, carried out at various levels of biological organization from single genes (proteins) to ecosystems. In each of those examples, trade-offs and constraints in thermal adaptation are addressed; these trade-offs and constraints may limit species' distribution and define their level of fitness. For a more comprehensive understanding, the paper sets out to elaborate the functional and conceptual connections among these independent studies and the various organizational levels addressed. This effort illustrates the need for an overarching concept of thermal adaptation that encompasses molecular, organellar, cellular, and whole-organism information as well as the mechanistic links between fitness, ecological success, and organismal physiology. For this data, the hypothesis of oxygen- and capacity-limited thermal tolerance in animals provides such a conceptual framework and allows interpreting the mechanisms of thermal limitation of animals as relevant at the ecological level. While, ideally, evolutionary studies over multiple generations, illustrated by an example study in bacteria, are necessary to test the validity of such complex concepts and underlying hypotheses, animal physiology frequently is constrained to functional studies within one generation. Comparisons of populations in a latitudinal cline, closely related species from different climates, and ontogenetic stages from riverine clines illustrate how evolutionary information can still be gained. An understanding of temperature-dependent shifts in energy turnover, associated with adjustments in aerobic scope and performance, will result. This understanding builds on a mechanistic analysis of the width and location of thermal windows on the temperature scale and also on study of the functional properties of relevant proteins and associated gene expression mechanisms.  相似文献   

8.
生物进化与特化   总被引:4,自引:0,他引:4  
罗维桢  王德利 《应用生态学报》2003,14(12):2351-2354
作者试图把生物的适应性变化区分成生物的进化和特化两种不同的概念,进化即生物逐渐演变,向前发展的过程;特化是指生物的水平发展的物种形成过程,即生物多样性的形成过程,这种区分可以避免许多不必要的争论,把这个新的概念体系和以往人们对生物进化研究的理论相结合。并用该方法重新解释以往人们的研究发现,可以看出生物发展的历史就是生物进化和特化交替进行的历史,以此可解释许多不同理论之间的矛盾。  相似文献   

9.
A scientific field matures as its theoretical underpinnings consolidate around unified theories: conceptual structures consisting of a few general propositions that encompass a wide domain of phenomena and from which can be derived an array of models. We demonstrate this process with a synthetic theory of ecological gradients and species richness. Our unified theory rests on four propositions. First, variation in some environmental factor effects variation in the number of individuals creating a gradient. Second, in a uniform environment of fixed area, more individuals lead to more species. Third, the variance of an environmental factor increases with its mean for sites of equal area. Fourth, all nonmonotonic relationships (i.e., hump shaped or U shaped) require a trade-off in organismal performance or in population characteristics with respect to the environmental gradient. We identify 17 models that link environmental gradients with diversity, show their relationship to our framework, and describe issues surrounding their empirical testing. We illustrate how a general theory can be used to build new models such as that for the U-shaped productivity-diversity relationship. Finally, we discuss how our theory could be unified further with other theories of diversity and indicate other areas of ecology that are ripe for unification. By providing an example of the process of theory unification, we hope to encourage such efforts throughout ecology.  相似文献   

10.
How can one understand the increasing interest in “urban invasions”, or biological invasions in urban environments? We argue that interest in urban invasions echoes a broader evolution in how ecologists view “the city” in relation to “the natural”. Previously stark categorical distinctions between urban and natural, human and wild, city and ecology have floundered. Drawing on conceptual material and an analysis of key texts, we first show how the ecological sciences in general—and then invasion science in particular—previously had a blind spot for cities, despite a number of important historical and continental European exceptions. Then, we document the advent of an urban turn in ecology and, more recently, in invasion ecology, and how this has challenged fundamental concepts about “nativity”, “naturalness”, and human agency in nature. The urban turn necessitates more explicit and direct attention to human roles and judgements. Ecology has moved from contempt (or indifference) for cities, towards interest or even sympathy.  相似文献   

11.
A fundamental aim of microbiome research is to understand the factors that influence the assembly and stability of host-associated microbiomes, and their impact on host phenotype, ecology and evolution. However, ecological and evolutionary theories applied to predict microbiome community dynamics are largely based on macroorganisms and lack microbiome-centric hypotheses that account for unique features of the microbiome. This special feature sets out to drive advancements in the application of eco-evolutionary theory to microbiome community dynamics through the development of microbiome-specific theoretical and conceptual frameworks across plant, human and non-human animal systems. The feature comprises 11 research and review articles that address: (i) the effects of the microbiome on host phenotype, ecology and evolution; (ii) the application and development of ecological and evolutionary theories to investigate microbiome assembly, diversity and stability across broad taxonomic scales; and (iii) general principles that underlie microbiome diversity and dynamics. This cross-disciplinary synthesis of theoretical, conceptual, methodological and analytical approaches to characterizing host–microbiome ecology and evolution across systems addresses key research gaps in the field of microbiome research and highlights future research priorities.  相似文献   

12.
Recently, it has been suggested that anthropologists could more effectively build scientific theories of cultural evolution by reference to biology rather than social science. In this way, the evolution of cultures might be more usefully viewed as an anolog to the evolution of species. In systematic biology, however, the nature of species continues to be the subject of a long-standing duality of thought. This duality is analogous to the longstanding conflict in anthropology over the nature of culture. We argue, by analogy to Michael Ghiselin’s work on species, that a culture is an individual, not a class, and that cultures, like other individual entities, evolve. This view is highly concordant with concepts of culture formulated in earlier decades of this century. It has also been the philosophical orientation of American archaeology for approximately the last 25 years. We conclude that both biology and anthropology have an equal potential of contributing to a general evolutionary theory.  相似文献   

13.
Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis'' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology.  相似文献   

14.
Next‐generation sequencing (NGS) technology is revolutionizing the fields of population genetics, molecular ecology and conservation biology. But it can be challenging for researchers to learn the new and rapidly evolving techniques required to use NGS data. A recent workshop entitled ‘Population Genomic Data Analysis’ was held to provide training in conceptual and practical aspects of data production and analysis for population genomics, with an emphasis on NGS data analysis. This workshop brought together 16 instructors who were experts in the field of population genomics and 31 student participants. Instructors provided helpful and often entertaining advice regarding how to choose and use a NGS method for a given research question, and regarding critical aspects of NGS data production and analysis such as library preparation, filtering to remove sequencing errors and outlier loci, and genotype calling. In addition, instructors provided general advice about how to approach population genomics data analysis and how to build a career in science. The overarching messages of the workshop were that NGS data analysis should be approached with a keen understanding of the theoretical models underlying the analyses, and with analyses tailored to each research question and project. When analysed carefully, NGS data provide extremely powerful tools for answering crucial questions in disciplines ranging from evolution and ecology to conservation and agriculture, including questions that could not be answered prior to the development of NGS technology.  相似文献   

15.
微生物生态学理论框架   总被引:12,自引:7,他引:5  
曹鹏  贺纪正 《生态学报》2015,35(22):7263-7273
微生物是生态系统的重要组成部分,直接或间接地参与所有的生态过程。微生物生态学是基于微生物群体的科学,利用微生物群体DNA/RNA等标志物,重点研究微生物群落构建、组成演变、多样性及其与环境的关系,在生态学理论的指导和反复模型拟合下由统计分析得出具有普遍意义的结论。其研究范围从基因尺度到全球尺度。分子生物学技术的发展,使人们可以直接从基因水平上考查其多样性,从而使得对微生物空间分布格局及其成因的深入研究成为可能。进而可以从方法学探讨微生物生物多样性、分布格局、影响机制及其对全球变化的响应等。在微生物生态学研究中,群落构建与演化、分布特征(含植物-微生物相互关系)、执行群体功能的机理(生物地球化学循环等)、对环境变化的响应与反馈机理是今后需要关注的重点领域。概述了微生物生态学的概念,并初步提出其理论框架,在对比宏观生态学基础理论和模型的基础上,分析微生物多样性的研究内容、研究方法和群落构建的理论机制,展望了今后研究的重点领域。  相似文献   

16.
A general understanding of biological invasions will provide insights into fundamental ecological and evolutionary problems and contribute to more efficient and effective prediction, prevention and control of invasions. We review recent papers that have proposed conceptual frameworks for invasion biology. These papers offer important advances and signal a maturation of the field, but a broad synthesis is still lacking. Conceptual frameworks for invasion do not require invocation of unique concepts, but rather should reflect the unifying principles of ecology and evolutionary biology. A conceptual framework should incorporate multicausality, include interactions between causal factors and account for lags between various stages. We emphasize the centrality of demography in invasions, and distinguish between explaining three of the most important characteristics by which we recognize invasions: rapid local population increase, monocultures or community dominance, and range expansion. As a contribution towards developing a conceptual synthesis of invasions based on these criteria, we outline a framework that explicitly incorporates consideration of the fundamental ecological and evolutionary processes involved. The development of a more inclusive and mechanistic conceptual framework for invasion should facilitate quantitative and testable evaluation of causal factors, and can potentially lead to a better understanding of the biology of invasions.  相似文献   

17.
Modern biology has been heavily influenced by the gene‐centric concept. Paradoxically, this very concept – on which bioresearch is based – is challenged by the success of gene‐based research in terms of explaining evolutionary theory. To overcome this major roadblock, it is essential to establish new theories, to not only solve the key puzzles presented by the gene‐centric concept, but also to provide a conceptual framework that allows the field to grow. This paper discusses a number of paradoxes and illustrates how they can be addressed by the genome‐centric concept in order to further resynthesize evolutionary theory. In particular, methodological breakthroughs that analyze genome evolution are discussed. The multiple interactions among different levels of a complex system provide the key to understanding the relationship between self‐organization and natural selection. Darwinian natural selection applies to the biological level due to its unique genetic and heterogeneous features, but does not simply or directly apply to either the lower non‐living level or higher intellectual society level. At the complex bio‐system level, the genome context (the entire package of genes and their genomic physical relationship or genomic topology), not the individual genes, defines the system and serves as the principle selection platform for evolution.  相似文献   

18.
保护生物学概要   总被引:3,自引:0,他引:3  
保护生物学的形成是对生物危机的反应和生物科学迅速发展的结果。它是应用科学解决由于人类活动干扰或其它因素引起的物种、群落和生态系统出现的问题的新学科。其”目的是提供保护生物多样性的原理和工具“,其基础科学和应用科学的综合性交叉学科。系统学、生态学、生物地理学和种群生态学的原理和方法是保护生物学重要的理论和实践基础。  相似文献   

19.
生态学既是生物学的分支学科,也是环境科学、地球系统科学的重要组成部分,其研究成果可直接服务于植物、动物、微生物的生物多样性保护、生物资源利用及生物产业管理等应用领域.生态系统概念将经典生态学或者基础生态学研究扩展到了生态系统生态学或者生态系统科学的新阶段,奠定了大尺度及全球生态环境科学研究的理论基础,促进了生物学、地理...  相似文献   

20.
生物进化研究的回顾与展望   总被引:3,自引:0,他引:3  
生物进化是自然科学的永恒之迷。随着历史的发展和科学的进步,生物进化思想从早期的萌芽,到自然选择学说、新达尔文主义,从现代综合理论,到分子进化的中性学说。再到新灾变论和点断平衡论等。当前,由于生物学各分支学科的飞速发展.它们就各自的研究对象在宏观和微观上不断地拓展和深入,并在不同的层次上形成了广泛的交叉、渗透和融合,现代的进化生物学研究从宏观的表型到微观的分子,从群体遗传改变的微进化到成种事件以及地史上生物类群谱系演化的宏进化,从直接的化石证据到基于形态性状、分子证据和环境变迁的综合推理,从基于遗传基础的比较基因组学到演化机理的进化发育生物学等。可以预见,在新的世纪里,在哲学和具体方法论(如系统论、控制论和信息论)的指导下,在生命科学、其他自然科学乃至社会科学工作者的通力合作下,综合遗传、发育和进化等研究领域的各种理论成果,生物进化理论即将出现也一定会出现的一个新的大综合和新的大统一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号