首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Palaeoworld》2020,29(3):577-589
A latest Permian timeline (251.9 Ma) can be constructed from the perspectives of: a global nickel spike attributed to emissions from the coeval Siberian flood-basalt eruptions, the correlative end-Permian marine mass extinction (EPME), a transition from reversed to normal paleomagnetism, and a negative anomaly in δ13Ccarb and δ13Corg. In a number of marine and non-marine localities, this timeline is also correlated (to within ≤30 ky) with palynological evidence for the latest Permian destruction of terrestrial vegetation and the accompanying short-lived global fungal (Reduviasporonites) event. This correlation suggests that devastation in marine and non-marine environments was essentially coeval at a time marked by hyperthermal conditions and anoxic oceans.We utilized this proposed timeline to estimate the relative timing of the extinction of latest Permian vertebrates in the Karoo Basin of South Africa. In several sections in the Karoo, the LAD of the therapsid Dicynodon, is correlated with the proposed timeline. In the Carlton Heights section in the Karoo we estimate that the palynological changes and the fungal event occurred within ≤30 ky of the LAD of Dicynodon. Further sampling in the Karoo and other Permian–Triassic non-marine basins would help to clarify the relative timing of the global marine extinctions, plant devastation and the disappearance of non-marine vertebrates.  相似文献   

2.
Large perturbations to the global carbon cycle occurred during the Permian–Triassic boundary mass extinction, the largest extinction event of the Phanerozoic Eon (542 Ma to present). Controversy concerning the pattern and mechanism of variations in the marine carbonate carbon isotope record of the Permian–Triassic crisis interval (PTCI) and their relationship to the marine mass extinction has not been resolved to date. Herein, high-resolution carbonate carbon isotope profiles (δ13Ccarb), accompanied by lithofacies, were generated for four sections with microbialite (Taiping, Zuodeng, Cili, and Chongyang) in South China to better constrain patterns and controls on δ13Ccarb variation in the PTCI and to test hypotheses about the temporal relationship between perturbations to the global carbon cycle and the marine mass extinction event. All four study sections exhibit a stepwise negative shift in δ13Ccarb during the Late Permian–Early Triassic, with the shift preceding the end-Permian crisis being larger (> 3‰) than that following it (1–2‰). The pre-crisis shifts in δ13Ccarb are widely correlatable and, hence, represent perturbations to the global carbon cycle. The comparatively smaller shifts following the crisis demonstrate that the marine mass extinction event itself had at most limited influence on the global carbon cycle, and that both Late Permian δ13Ccarb shifts and the mass extinction must be attributed to some other cause. Their origin cannot be uniquely determined from C-isotopic data alone but appears to be most compatible with a mechanism based on episodic volcanism in combination with collapse of terrestrial ecosystems and soil erosion.  相似文献   

3.
《Comptes Rendus Palevol》2005,4(6-7):623-636
The southern half of the main Karoo Basin in South Africa contains an almost continuous stratigraphic record of terrestrial sedimentation through the Permo-Triassic boundary (PTB). Detailed logging of multiple sections through the boundary sequence has defined the end-Permian mass extinction event using vertebrate fossils as well as a synchronous change in fluvial style reflecting a rapid aridification of climate. Field data demonstrates a 69% mass extinction of Late Permian terrestrial vertebrates lasting some 300 kyr terminating at the PTB, followed by a lesser extinction event (31%) approximately 160 kyr later involving four survivor taxa that crossed the PTB. The Early Triassic recovery fauna comprises proterosuchian archosauromorphs (Proterosuchus), small amphibians (Micropholis, Lydekkerina), small procolophonoids (‘Owenetta’ kitchingorum, Procolophon), medium-sized dicynodonts (Lystrosaurus) and small insectivorous cynodonts (Progalesaurus, Galesaurus, Thrinaxodon). Taphonomic bias towards preferential preservation of drought accumulations in the Early Triassic has probably over-emphasized the abundance and diversity of semi aquatic and burrowing animals. To cite this article: R. Smith, J. Botha, C. R. Palevol 4 (2005).  相似文献   

4.
The timing and nature of biotic recovery from the devastating end-Permian mass extinction (252 Ma) are much debated. New studies in South China suggest that complex marine ecosystems did not become re-established until the middle–late Anisian (Middle Triassic), much later than had been proposed by some. The recently discovered exceptionally preserved Luoping biota from the Anisian Stage of the Middle Triassic, Yunnan Province and southwest China shows this final stage of community assembly on the continental shelf. The fossil assemblage is a mixture of marine animals, including abundant lightly sclerotized arthropods, associated with fishes, marine reptiles, bivalves, gastropods, belemnoids, ammonoids, echinoderms, brachiopods, conodonts and foraminifers, as well as plants and rare arthropods from nearby land. In some ways, the Luoping biota rebuilt the framework of the pre-extinction latest Permian marine ecosystem, but it differed too in profound ways. New trophic levels were introduced, most notably among top predators in the form of the diverse marine reptiles that had no evident analogues in the Late Permian. The Luoping biota is one of the most diverse Triassic marine fossil Lagerstätten in the world, providing a new and early window on recovery and radiation of Triassic marine ecosystems some 10 Myr after the end-Permian mass extinction.  相似文献   

5.
A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian–Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74–80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid-Pristerognathus AZ that is temporally constrained by a U–Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions.  相似文献   

6.
We present a preliminary report on the first diverse central European assemblage of Late Permian terrestrial tetrapods from a fissure-filling in marine sediments of the lower Zechstein near Korbach (northwestern Hesse, Germany). It includes therapsids (cynodonts and dicynodonts), archosauromorph diapsids, and pareiasaurs. Similar assemblages were previously known only from the Upper Permian of Russia, Scotland, and South and East Africa. The occurrence of the basal cynodontProcynosuchus is paleobiogeographically significant because this taxon was previously known only from theDicynodon lacerticeps-Whaitsia assemblage zone of South Africa and the Madumabisa Mudstone of Zambia. The geological context of the Korbach site permits a rather precise chronostratigraphic placement of the tetrapod assemblage in the interval between Zechstein 1 and 3. The Korbach tetrapod assemblage is late Tatarian in age.  相似文献   

7.
Restudy of the unique diapsid reptile Mesosuchus browni Watson, from the Cynognathus Assemblage Zone (late Early Triassic to early Middle Triassic) of the Burgersdorp Formation (Tarkastad Subgroup; Beaufort Group) of South Africa, confirms that it is the most plesiomorphic known member of the Rhynchosauria. A new phylogenetic analysis of basal taxa of Archosauromorpha indicates that Choristodera falls outside of the Sauria, Prolacertiformes is a paraphyletic taxon with Prolacerta sharing a more recent common ancestor with Archosauriformes than with any other clade, Megalancosaurus and Drepanosaurus are sister taxa in the clade Drepanosauridae within Archosauromorpha, and are the sister group to the clade Tanystropheidae composed of Tanystropheus, Macrocnemus, and Langobardisaurus. Combination of the phylogenetic relationships of basal archosauromorphs and their known stratigraphic ranges reveals significant gaps in the fossil records of Late Permian and Triassic diapsids. Extensions of the temporal ranges of several lineages of diapsids into the Late Permian suggests that more groups of terrestrial reptiles survived the end-Permian mass extinction than thought previously.  相似文献   

8.
《Palaeoworld》2020,29(2):439-452
Reconstructing the terrestrial palaeoenvironment during the end-Permian is made challenging by widespread erosion and ecosystem destruction. High-resolution sampling for palynofacies and palynology in sections that preserve the boundary interval allows for detailed examination of the drastic environmental changes that characterize the Permian–Triassic mass extinction. In the Bowen and Galilee basins in eastern Australia, this environmental perturbation is recorded within a Marker Mudstone that occurs above the uppermost Permian coal seams. The Marker Mudstone is used as a stratigraphic reference level at many localities, but has previously only been studied at a single locality in the Bowen Basin. In the present study, borehole Tambo 1-1A drilled in the Galilee Basin was selected to clarify whether this black, organic-rich mudstone marks a marine transgression, and to examine potential indicators of the end-Permian mass extinction. A total of 22 samples were taken from the mudstone unit, and from the over- and underlying strata and processed for palynology, palynofacies, and carbon isotope analysis.Biostratigraphic data indicate that the Marker Mudstone itself covers the uppermost part of unit APP5, with the first index taxa of unit APP6 floras occurring in samples less than 80 cm above this interval. This can be correlated with several other localities in the Bowen and Sydney basins where this shift occurs just above the uppermost Permian coal seam. Palynofacies data agree with previous interpretations of a southwards prograding delta that subsides as base level rises to form an extensive waterbody in which the Marker Mudstone was deposited. A change from translucent phytoclast-dominated to opaque phytoclast-dominated palynofacies within the Marker Mudstone suggests a shift to more oxic conditions in the water column, while base level begins to fluctuate, or increased terrestrial input from fluvial systems as the hinterland rises. Algal bodies resembling Botryococcus are found in the strata above the Marker Mudstone, but differ in morphology from the algal bodies found in the deltaic facies below. The presence of acanthomorph acritarchs in the Marker Mudstone and in the overlying Rewan Formation may indicate marine influence. Forms resembling fungal spores are present, but they do not show a “spike” as seen in other P–T boundary localities.The relative position of unit APP6 to the P–T boundary itself remains unclear. APP6 assemblages are dominated by simple acavate trilete and cavate trilete spores, which suggests stressed environment dominated by ferns and lycopods. The presence of degraded phytoclasts towards the top of the Marker Mudstone may also be used to suggest a mass-extinction interval. They may also be indicative of shifting local palaeoenvironmental changes, an interpretation that is supported by the low magnitude negative excursion of the δ13C isotope values within the Marker Mudstone. More datasets from the Bowen and Galilee basins will be essential to decoupling these signals.  相似文献   

9.
The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth''s history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates.  相似文献   

10.
Fossil plants are scarce in the Earliest Triassic marine deposits of western Guizhou and eastern Yunnan. Only Annularia shirakii, Lobatannularia sp., Paracalamites stenocostatus, Gigantopteris sp., Pecopteris sp. were reported from the base of the Kayitou Formation dated as Early Induan by marine fauna. Recently, we discovered numerous representatives of the genus Annalepis in the same Lowermost Triassic beds: A. latiloba, Abrevicystis, Aangusta, Annalepis spp. occur associated with a basal Triassic marine fauna. This discovery fills the biostratigraphic gap between the Late Permian “Gigantonoclea guizhouensis-Ullmannia cf. bronnii-Annularia pingloensis” and the late Lower Triassic “Neuropteridium–Albertia–Voltzia” assemblages reported from South China. It represents an important datum dealing with the very beginning of a new terrestrial flora installation after the Permian flora disappearance following the Permian–Triassic boundary mass extinction. This “starting point” of a new vegetal cover in South China is to be taken into account in reconstructing through space and time the settlement process of the Mesozoic floristic provinces.  相似文献   

11.
Marine communities of the Paleozoic differ markedly from those of the post-Paleozoic, a dichotomy long recognized as the most fundamental change between the Cambrian metazoan radiation and the present. The end-Permian mass extinction of about 54% of marine families eliminated many of the groups that dominated Paleozoic communities. Correlative changes occurred in terrestrial vertebrate and plant communities, but there is no clear evidence that these changes are related to the marine extinction. The marine extinction occurred during a period of physical change, and a variety of extinction mechanisms have been proposed, most related to a major Late Permian marine regression or to climatic changes. Unfortunately, the regression has made it difficult to gather data on the rate, timing and pattern of extinction, and the available data exclude only a few hypotheses. Thus the largest mass extinction, and the one with the greatest evolutionary importance, is also the most poorly understood.  相似文献   

12.
From the Middle to Late Permian, the Laibin area in Guangxi, South China, was situated on the slope of an isolated carbonate platform, on which continuous marine successions were deposited. Two global stratotype sections for the boundary between the Guadalupian (Middle Permian) and Lopingian (Late Permian) are located at Penglaitan and Tieqiao in the Laibin area, respectively, and thus are chosen for study. At the two locations, 14 facies are recognized in the Maokou and Heshan Formations, and they are further grouped into four facies associations (basin, lower slope, upper slope, and platform margin). Six main transgressive–regressive (TR) sequences are identified in strata from the Roadian (Middle Permian) to the Wuchiapingian (Late Permian). They are conformable marine sequences that were little influenced by regional uplift (Dongwu Movement) and so provide a good record of the sea-level changes in South China at this time. Based on the significant taxonomic selection and controversial marine faunal loss in the end-Guadalupian mass extinction, and the Middle-Late Permian sea-level changes recorded by the TR sequences in the Laibin area, it is suggested that this extinction event might have been triggered by the reduction and loss of shallow-marine habitat area caused by the end-Guadalupian regression. The global cooling and Emeishan volcanism also occurring at this time could have further enhanced this extinction event.  相似文献   

13.
The ecological competition between brachiopods and bivalves is analysed by means of a quantitative palaeoecologic method applied on four assemblages located within a short stratigraphic interval, approximately 2 m thick, in the lower Tesero Member of the Werfen Formation (in the Southern Alps). The assemblages originate from the Tesero, Bulla and Sass de Putia sections. The analysed stratigraphic interval, uppermost Changhsingian in age, is located between the early and heaviest phase of the end-Permian mass extinction, which occurred across the Bellerophon/Werfen formational boundary (Event Boundary), and the Permian/Triassic boundary (Chronological Boundary), when nearly all the Permian stenotopic holdovers disappeared.These assemblages are characterised by small sized skeletons (“Lilliput effect”), which represent an adaptive survival strategy in stressed and harsh habitats resulting from the climatic and palaeoceanographic changes connected with the mass extinction. The Tesero assemblages are dominated by rhynchonelliform brachiopod Orbicoelia (bed CNT10) or Streptorhynchus (bed CNT11A), which were mostly attached at the top of shallow microbialitic mounds. These assemblages are again dominated by Permian stenotopic taxa and show a Palaeozoic structure. The Tesero habitat, which again permitted the survival of brachiopods, represented one of the last refuges in the western Tethys. On the contrary, the Bulla (BU9-10) and Sass de Putia (wPK13A) assemblages are bivalve-dominated, and thus show an ecologic structure typical of Early Triassic post-extinction marine benthic communities or Palaeozoic stressed marine communities. The bivalve-dominated assemblages proliferated in prevailing muddy siliciclastic substrates, with brief episodes of microbial algal growth. The most important environmental limiting factors and leading causes of end-Permian mass extinction are discussed in terms of palaeoautecologic and palaeosynecologic analysis.The different taxonomic composition and ecologic structure of the assemblages is related to palaeogeography, including water depth and connections with the open sea. The brachiopod-dominated assemblage, exclusive of the Tesero section, proliferated in microbial carbonate habitats in near-shore environments. The bivalve-dominated assemblages, which were more widespread than the brachiopod assemblages in the Dolomites and also occurred in other western Tethys localities, occur in more open and deeper marine environments. In the western Tethys margins, the local distribution of mixed faunas suggests that the extinction of Permian stenotopic taxa was caused by the onset of poisonous water on the shelves originating from deep marine environments.This extinction pattern appears to be a regional phenomenon and does not seem be applicable on a global scale. The extinction events were controlled by a complex network of interactive factors and the survival of faunal elements was probably stochastic.  相似文献   

14.
The patterns of spatial differentiation of the Early Mesozoic terrestrial biota in Eastern Europe and Australia-Tasmania demonstrate that the tetrapod faunal recovery following the Permian extinction was characterized by both global and regional heterogeneity. Local distinctions observed in the development of Early Triassic tetrapod assemblages of European Russia allow the recognition of the following realms: (1) the central and northern regions of the East European Platform (Moscow-Mezen Syncline) and the Timan-North Ural Region; (2) the southern Fore-Urals, including the Obshchii Syrt Plateau; and (3) the southern regions of the East European Platform (the slope of the Voronezh Anticline). Climatic conditions at the initial stage of the development of local communities were characterized by an increase in aridity and seasonal contrasts of climate. Therefore, terrestrial assemblages mostly concentrated in the aquatic and coastal biotopes. Accordingly, vertebrate assemblages of the region were dominated everywhere by aquatic amphibians and semiaquatic reptiles, while the accompanying palynomorph assemblages show the predominance of hygrophilous vegetation indicative of swampy mangrove setting. With respect to amphibians, a peak of local biogeographic differentiation falls on the onset of the Early Triassic and, in the case of reptiles, on the end of this time span. This change conforms to the increasing role of reptiles in the overall taxonomic diversity with time. Among the three main biogeographic units of the region, the Southern Fore-Ural Realm is distinguished by the maintenance of distinct faunal links with Gondwanan regions. The Southern Realm shows a connection with the Germanic Basin and more western Euramerican areas, which is documented for the Late Olenekian and occurred under influence of coastal marine conditions.  相似文献   

15.
Two new gliding reptiles from the Late Permian Kul’chumovo-A locality (Orenburg Region), Rautiania alexandri gen. et sp. nov. and R. minichi sp. nov., are described and assigned to the family Weigeltisauridae. These finds substantially expand the knowledge of the morphology of this group and suggest the climax state of terrestrial tetrapod communities of eastern Europe in the pre-Triassic Time, which resulted in the development of ecological niches not typical of earlier terrestrial vertebrate faunas.  相似文献   

16.
The greatest mass extinction occurred at the end of the Permian. Most records of the mass extinction are not from pelagic sediments, but from shallow-marine and terrestrial sediments. Although several pelagic sections that span the end-Permian mass extinction have been found, these sections contain few index fossils and are often discontinuous because of small faults. We found the index fossils Albaillella cf. triangularis (Radiolaria) in siliceous claystone beds, Hindeodus parvus (Conodont) in the overlying black claystone beds, and Neospathodus cf. cristagalli and Ns. waageni (Conodont) in the subsequent siliceous claystone beds in Akkamori section-2 in northern Japan. These fossils suggest that this section ranges from the late Permian to the Early Triassic, including the early Induan and Olenekian stages. Furthermore, the lithological changes in the section, i.e., starting from bedded chert through siliceous claystone and black claystone to siliceous claystone, are concordant with those of well-known Permian–Triassic pelagic sequences in Japan. There is no gap between each lithofacie of the Akkamori section-2. Critical lithological continuity between Upper Permian siliceous claystone beds and uppermost Permian to lowermost Triassic black claystone beds of the Akkamori section-2 was recognized by observing hand-polished specimens and thin sections. Such paleontological and sedimentological evidence implies that the Akkamori section-2 is a continuous pelagic section that records the end-Permian mass extinction event. The carbonaceous black claystone beds have high total organic carbon (TOC) concentrations (1.06–3.31 wt.%), suggesting oceanic anoxia at least deep and probably stable primary productivity. A decrease in radiolarian abundance from 26–563 to 0.27–20 specimens/cm2 coincided with an increase in TOC content from 0.01–0.16 to 1.06–3.31 wt.% at the boundary of the siliceous claystone and the overlying black claystone beds near the top of the Permian, implying that radiolarian extinction occurred at the end of the Permian coinciding with oceanic anoxia. Although TOC contents decreased in the early Olenekian (Smithian), radiolarian abundance did not increase at that time, indicating that radiolarian recovery was delayed by > 1.5 m.y.  相似文献   

17.
A new unique and diverse biotic assemblage of the terminal Permian has recently been discovered in the town of Vyazniki (Central Russia). The Vyazniki terrestrial community is transitional between Permian and Triassic ones and represents the last, so far unknown stage of the global ecological crisis of the continental biota at the Permian-Triassic boundary. The successive development of land biotic crisis in the Late Permian, which was followed by mass extinction at the Permian-Triassic boundary, and long, successive postcrisis development and specialization of new Triassic groups as well as rearrangement and diversification of the biotic assemblage composition and community structure suggest predominance of intrinsic, biotic causes of this crisis, realized in destabilization, alteration, and new stabilization of continental communities and ecosystems.  相似文献   

18.
In 2003, Stanley & Powell reported depressed rates of origination and extinction in marine invertebrates during the Late Palaeozoic Ice Age (LPIA). Using a database of crinoid genera, rates of origination, extinction and genus duration were calculated at the stage level from the Early Devonian to the Late Permian. This 165 m.y. time span includes non‐glacial intervals before and after the LPIA, which spanned the Serpukhovian to Sakmarian, providing background rates for comparison. Data generated on crinoid evolutionary rates during the Middle to Late Palaeozoic were analysed and compared to Stanley & Powell's data to determine whether crinoid evolutionary patterns support their findings or suggest an alternative hypothesis. Rates of origination and extinction in all crinoid clades were reduced during the LPIA compared to the combined background intervals before and after the LPIA. However, crinoid diversity was higher during the LPIA than the surrounding time intervals. The difference in diversity trends between crinoids and other marine invertebrates is due to the advanced cladids clade. Unstable, fluctuating environmental conditions during the LPIA may have created habitats suitable for opportunistic crinoid genera that reduced both the probability of origination and extinction. The increased diversity of the advanced cladids is likely due to their unique adaptation of muscular arm articulations, which allowed them to thrive in marine settings with increased siliciclastic influx brought on by the Alleghenian orogeny. Despite the advanced cladids’ departure from the expected diversity count, the results of analyses performed on the updated crinoid database provide independent confirmation of Stanley & Powell's original hypothesis of depressed evolutionary rates in marine invertebrates during the LPIA.  相似文献   

19.
Bone microanatomy appears to track changes in various physiological or ecological properties of the individual or the taxon. Analyses of sections of the tibia of 99 taxa show a highly significant (P 相似文献   

20.
《Comptes Rendus Palevol》2005,4(6-7):487-500
Ninety-one percent of calcareous foraminiferal genera became extinct during the end-Permian mass extinction. The Early Triassic Epoch was a survival phase characterized by a short-lived proliferation of disaster forms and then a prolonged interval of low diversity. The orders Miliolida and Lagenida experienced limited taxonomic re-diversification in Early and Late Anisian time, respectively. All fusulinoidean fusulinides became extinct in Late Permian time, and only two non-fusulinoidean genera persisted into the Early Triassic. Triassic fusulinides diversified to just five genera before the order became entirely extinct in Late Triassic time. Involutinides originated in Olenekian time from an unknown ancestor. They did not significantly diversify until Late Triassic time. To cite this article: J.R. Groves, D. Altiner, C. R. Palevol 4 (2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号