共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of forest liming on soil processes 总被引:14,自引:1,他引:14
On the basis of a field experiment in Norway spruce with acid irrigation and compensatory liming of the soil surface (Höglwald, S-Bavaria), liming effects are described as lime dissolution rate, transformation of carbonate buffer to exchange buffer, time required for deacidification of soil and drainage water, mobilization of Cu and Pb, changes in soil organisms, humus decomposition, and nitrogen turnover. It was shown that lime dissolution followed an exponentially decreasing curve. 4 t ha-1 dolomitic lime were dissolved within 6 years. Additional acid irrigation of 4 kmol H+ ha-1 yr-1 as sulphuric acid speeded up the lime dissolution to about 4 years. After dissolution of lime about 70% of Ca and about 30% of Mg, both originating from lime dissolution, are retained in the surface humus layer, loading the exchange buffer capacity there. Liming acted as a protection against acid irrigation but the extension of soil deacidification downwards proceeded slowly due to the high base neutralizing capacity of protonated functional groups of the organic matter. The main depth effect is caused by Mg translocation. A significant increase of organic Cu complexes occurred due to mobilization of water soluble humus decomposition products. The effect of liming on litter decomposing organisms is demonstrated with microorganisms, collembolae and earthworms regarding the abundance and the structure of dominance. It was shown that liming may induce unusually large changes in biocenoses of forest soils. The decay of surface humus accounted for 7.2 t ha-1 or 23% of the store within 7 years. Within the same time span, liming caused a loss of about 170 kg N ha-1 or 14% of the store of the surface humus layer. The nitrate concentration in the drainage water thus increased by about 50 to 60 mg NO3
- L-1. Site-specific conditions are discussed, which produce such negative liming effects as increased nitrate concentration of seepage, humus decay and heavy metal mobilization. Redistribution of tree roots, induction of boron deficiency and root rot are also considered. It is indicated that liming may aggravate the increasing problem of nitrate contamination of forest ground water resources which is associated with deposition of atmogenous nitrogen compounds. Some recommendations are given regarding forest practice. 相似文献
2.
XIAOJUAN FENG ANDRÉ J. SIMPSON WILLIAM H. SCHLESINGER MYRNA J. SIMPSON 《Global Change Biology》2010,16(7):2104-2116
The dynamics and fate of terrestrial organic matter (OM) under elevated atmospheric CO2 and nitrogen (N) fertilization are important aspects of long‐term carbon sequestration. Despite numerous studies, questions still remain as to whether the chemical composition of OM may alter with these environmental changes. In this study, we employed molecular‐level methods to investigate the composition and degradation of various OM components in the forest floor (O horizon) and mineral soil (0–15 cm) from the Duke forest free air CO2 enrichment (FACE) experiment. We measured microbial responses to elevated CO2 and N fertilization in the mineral soil using phospholipid fatty acid (PLFA) profiles. Increased fresh carbon inputs into the forest floor under elevated CO2 were observed at the molecular‐level by two degradation parameters of plant‐derived steroids and cutin‐derived compounds. The ratios of fungal to bacterial PLFAs and Gram‐negative to Gram‐positive bacterial PLFAs decreased in the mineral soil with N fertilization, indicating an altered soil microbial community composition. Moreover, the acid to aldehyde ratios of lignin‐derived phenols increased with N fertilization, suggesting enhanced lignin degradation in the mineral soil. 1H nuclear magnetic resonance (NMR) spectra of soil humic substances revealed an enrichment of leaf‐derived alkyl structures with both elevated CO2 and N fertilization. We suggest that microbial decomposition of SOM constituents such as lignin and hydrolysable lipids was promoted under both elevated CO2 and N fertilization, which led to the enrichment of plant‐derived recalcitrant structures (such as alkyl carbon) in the soil. 相似文献
3.
更新方式对亚热带森林土壤溶液可溶性有机质数量及化学结构的影响 总被引:1,自引:1,他引:1
采用负压法对福建省三明市亚热带常绿阔叶林中米槠次生林(BF)、米槠人促更新林(RF)、米槠人工林(CP) 0~15、15~30、30~60 cm土层土壤溶液可溶性有机质(DOM)的浓度及光谱学特征进行研究.结果表明: 土壤溶液可溶性有机碳(DOC)浓度整体趋势为RF>CP>BF,而可溶性有机氮(DON)则为米槠人工林最高;且 DOC 和 DON 在表层(0~15 cm)土壤浓度皆显著高于底层(30~60 cm).芳香化指数大小为RF>CP>BF,且整体为表层较高.米槠人工林表层土壤以荧光强度高的短波峰(320 nm)为特征峰,表明其易分解物质含量高,腐殖化程度较低;而米槠人促更新林表层土壤则以宽平的中长波峰(380 nm)为特征峰,说明其腐殖化程度较高,有助于土壤肥力的储存.此外,30~60 cm深层DOM特性几乎不受森林更新方式的影响. 相似文献
4.
投加石灰石和菱镁矿对酸化土壤上马尾松(Pinus massoniana)林的影响 总被引:3,自引:0,他引:3
为了确定酸化森林生态系统的修复效果,在重庆铁山坪的马尾松林内设立了6个10m×10m的样地,其中2个作为对照样地,另外4个分别在土壤表面施撒石灰石和菱镁矿粉末,各有2个重复。在处理前和处理1a后的生长季末各进行了一次植被观测,协方差分析和多重比较的结果显示投加修复剂对马尾松生长的影响已经初步显现,马尾松的胸径增量和针叶平均长度都有显著的增加,而针叶中Ca、Mg元素含量也表现出显著的差别。另外,立木更新的变化、细根生物量的增加和物种多度的变化也较明显,总体来说生态系统有恢复的趋势。土壤上层细根的增加较快,这与在土壤表面施撒修复剂,上层土壤的化学变化较显著是一致的。而两种修复剂对生态系统的影响也表现出明显的差异,相对而言,施撒菱镁矿的效果可能会更好。由于土壤修复的效果是长期的,其影响观测还将继续下去。 相似文献
5.
Calcium content of liming material and its effect on sulphur release in a coniferous forest soil 总被引:1,自引:1,他引:0
Soil columns with O + A (Experiment I) or Ohorizons (Experiment II) from a Haplic Podsol wereincubated at 15 °C for 368 and 29 + 106 days,respectively. Three types of liming material differingin Ca2+ content, i.e. calcium carbonate(CaCO3), dolomite (CaMg(CO3)2) andmagnesium carbonate (MgCO3), were mixed into theO horizons in equimolar amounts corresponding to 6000kg of CaCO3 per ha. In the limed treatments ofExperiment I, the leaching of dissolved organic carbon(DOC) and the net sulphur mineralization (estimated asaccumulated SO
4
2–
leaching corrected forchanges in the soil pools of adsorbed and waterextractable SO
4
2–
) increased with decreasingCa2+ content of the lime and increasing degree oflime dissolution. In relation to the controltreatment, only the MgCO3 treatment resulted ina significantly higher net sulphur mineralization. InExperiment I the net sulphur mineralization was 4.06,1.68, 0.57, and 2.14 mg S in the MgCO3,CaMg(CO3)2, CaCO3 and control treatment,respectively. The accumulated SO
4
2–
leachingin Experiment II during the first 29 days was 1.70,0.74 and 0.48 mg S in the MgCO3,CaMg(CO3)2 and control treatment,respectively. In the two experiments there wereconsistently significant positive correlations betweenleached amounts of SO
4
2–
and DOC. It wasconcluded that net sulphur mineralization was stronglyconnected to the solubilization of the organic matter(DOC formation) and that pH and/or Ca2+ ionsaffected the net sulphur mineralization through theireffects on organic matter solubility. 相似文献
6.
长白山原始阔叶红松林土壤有机质组分小尺度空间异质性 总被引:2,自引:1,他引:2
土壤有机质(SOM)对于维持生态系统生产力具有非常重要的意义,有机质的组成、空间分布和空间关联性是影响和控制诸多生态系统过程的重要因素。应用地统计学方法,对长白山原始阔叶红松林局部尺度内0—20 cm土壤有机质与活性有机质的空间异质性进行了研究,并通过交叉半方差分析探讨了二者之间的相关性。研究结果表明:(1)总体上来说,土壤有机碳(SOC)、全氮(TN)、颗粒态有机碳(POC)和颗粒态有机氮(PON)空间异质性较小;而土壤微生物量碳(MBC)、微生物量氮(MBN)和表层(0—10 cm)溶解性有机碳(DOC)的空间异质性较大;(2)SOC、TN、MBC、DOC、POC和PON随着深度的增加空间自相关性增加;而溶解性有机氮(DON)的空间自相关性随深度的增加变化不大;(3)SOC与TN在表层和下层(10—20 cm)均存在空间上的正相关关系;(4)SOC、TN在表层和下层分别与MBC、MBN、DOC、DON和POC呈空间上的正相关性,但是与PON之间的空间相关关系较差;(5)不同土层深度的土壤活性有机质之间的相关关系存在差异。在表层,除POC,PON外,其余土壤活性有机质组分在空间上两两相关;但是随着土壤深度的增加,活性有机质变量之间在空间上两两相关。研究结果表明土壤有机质组分在长白山原始阔叶红松林小尺度内存在不同空间异质性和空间关联性,这为人们更好的理解森林生态系统功能(如土壤养分循环)提供了重要的理论依据。 相似文献
7.
Two adjacent catchments in the Otway Ranges of Victoria, Australia (Redwater and Clearwater) produce water with markedly different concentrations of dissolved organic carbon (DOC) during summer. Water from Redwater Creek had a DOC concentration of 32 mg L–1, while water from Clearwater Creek had a DOC concentration of 3.8 mg L–1. Examination of the catchments revealed that while climate, topography, vegetation and land use were similar, the soils were different. The objective of this study was to examine the relationship between the concentration and chemical composition of DOC in stream waters and the nature of soils in the two catchments. Soil mapping determined that clayey soils formed on Cretaceous sediments (Cretaceous soils) occurred throughout both catchments, but that Redwater Catchment also contained a large area (39%) of sandy soils formed on Tertiary sediments (Tertiary soils). The concentration of DOC in forest floor leachate was high in both the Tertiary and Cretaceous areas; however, the concentration of DOC in water draining areas dominated by Tertiary soils was greater than that in water draining areas dominated by Cretaceous soils. Laboratory experiments showed that the Cretaceous soils had higher adsorption capacities for forest floor leachate DOC than the Tertiary soils. The difference in DOC concentrations of the streams was therefore attributed to the difference in adsorption capacity of catchment soils for DOC. Adsorption capacities of the soils were found to be a function of their clay contents and specific surface areas.Solid-state3C nuclear magnetic resonance spectroscopy and pyrolysis-mass spectrometry were used to determine the chemical structure of DOC found in streams and forest floor leachate samples and that remaining in solution after interaction with soil. Chemistry of DOC in forest floor leachate was similar before and after interaction with soil, indicating no preferential adsorption of a particular type of carbon. Thus, differences between the chemical structure of stream DOC and forest floor leachate DOC could be attributed to microbial modifications during its movement through soils and into the streams, rather than losses by adsorption. 相似文献
8.
Characterization of organic matter in a forest soil of coastal British Columbia by NMR and pyrolysis-field ionization mass spectrometry 总被引:4,自引:0,他引:4
C. M. Preston R. Hempfling H. -R. Schulten M. Schnitzer J. A. Trofymow D. E. Axelson 《Plant and Soil》1994,158(1):69-82
Organic matter in the soil profile under a young Douglas-fir stand in coastal British Columbia was characterized by examining intact samples of fresh litterfall and organic horizons (LF, H), and fractions (floatables, humic acid [HA], fulvic acid [FA], humin [HU]) from the three mineral horizons (Ae, Bm, BC). Some 30–40% of the carbon in the mineral horizons was found in poorly-decomposed plant material floatable in water, a fraction whose characteristics changed little with depth, and which contained over 1% Fe. The proportion of soil C in HA plus FA was approximately 8%, but the ratio of C in FA/HA increased with depth. Solid-state 13C NMR spectra of litterfall, LH and H samples showed effects of decomposition, in particular a decrease in 0-alkyl C from litterfall to LH to H, and degradation of resolution from LF to H. For the mineral soil fractions, both floatables and de-ashed HU (HUd prepared by HCl/HF treatment) indicated high levels of the original plant biopolymers, including a large alkyl component. Solution 13C spectra of the HAs from mineral horizons showed little difference with depth, except that peaks due to lignin were more pronounced for the Bm HA. The NMR spectra of FAs were high in 0-alkyl and carboxyl C. Pyrolysis-field ionization mass spectrometry confirmed and extended the results from NMR and chemical analyses, in particular demonstrating the accumulation of suberin in some fractions and the leaching and decomposition of lignin components with increasing depth in the mineral horizons. The general features of the HA, FA and HUd from this forest soil, and the effects of decomposition and pedogenesis were similar to those widely found for agricultural and forest soils. However, the accumulation of suberin, and the leaching and decomposition of lignin are particularly associated with forest soils. The low proportion of soil C in HA and FA, and the high proportion in poorly decomposed, iron-rich plant fragments suggest that decomposition is somewhat limited at this site, which is classified as having low fertility. The high accumulations of alkyl C from suberin may also indicate, or contribute to inhibition of decomposition. 相似文献
9.
森林类型对土壤有机质、微生物生物量及酶活性的影响 总被引:4,自引:0,他引:4
以澳大利亚南昆士兰州典型森林类型——湿地松、南洋杉和贝壳杉林为对象,开展土壤可溶性有机碳和氮(SOC和SON)、微生物生物量碳和氮(MBC和MBN),以及土壤酶活性的研究,剖析森林类型对土壤质量的影响.结果表明:不同林型土壤SOC、SON含量分别在552 ~1154 mg·kg-1和20.11~57.32mg·kg-1;MBC、MBN分别在42~149 mg·kg-1和7~35 mg·kg-1.MBC、MBN之间呈显著相关.土壤几丁质酶、酸性磷酸酶、碱性磷酸酶和β-葡萄糖苷酶的活性分别为2.96 ~7.63、16.5 ~29.6、0.79 ~ 3.42和3.71 ~9.93 μg ·g-1·h-1,亮氨酸氨肽酶活性为0.18~0.46 μg·g-1·d-1.不同林型土壤SOC含量,以及土壤几丁质酶和亮氨酸氨肽酶活性为湿地松林、南洋杉林、贝壳杉林依次降低;而SON含量为南洋杉林>贝壳杉林>湿地松林,且南洋杉林的SON含量显著(P<0.05)高于湿地松林;MBC和MBN以及碱性磷酸酶活性为贝壳杉林>湿地松林>南洋杉林;酸性磷酸酶和β-葡萄糖苷酶活性为湿地松林>贝壳杉林>南洋杉林.在土壤生物代谢因子中,MBC、MBN、SON和亮氨酸氨肽酶对不同森林类型土壤影响较大. 相似文献
10.
The individual-based combined forest model EFIMOD including the soil-sub model SOMM has been used for the simulation of Scots
pine stand growth and soil organic matter (SOM) accumulation on a humus-free bare mineral surface. The growth of Scots pine
plantation, with an initial density of 10 000 trees ha−1 and average tree biomass of 0.01 kg was simulated for 50 yr under Central European climatic conditions (i) with varying atmospheric
nitrogen inputs and (ii) different rates of initial application of raw undecomposed organic material or compost, on humus-free
parent material. The accumulation of typical raw humus was simulated in all cases. The accumulation was most intensive in
the simulation of high atmospheric nitrogen input. The humus pool in the mineral topsoil was small but achieved its maximum
value with compost application. SOM nitrogen accumulation was scant in all cases, except the compost applications with low
atmospheric nitrogen input. No statistically significant differences of SOM and stand parameters were found between variants
without organic matter and those with low input of organic manure. However, the maximum relative rate of SOM and nitrogen
accumulation was found in the scenario without organic manure, under slowly growing unstable Scots pine plantation.
This revised version was published online in June 2006 with corrections to the Cover Date.
This revised version was published online in June 2006 with corrections to the Cover Date.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
11.
The effect of fire on nutrients in a pine forest soil 总被引:7,自引:0,他引:7
The effect of a hot summer fire on soil nutrient contents in the upper 2 cm of Aleppo pine forest with a dense woody understory
was studied from September 1985 to May 1986.
In comparison with the adjacent unburned forest, total nitrogen decreased by 25% but available forms of nitrogen were much
higher. In burned and unburned soils there was a similar trend to increase and decrease in NH
4
+
−N, However, while (NO
2
−
+NO
3
−
−N decreased in the unburned soil it rose rapidly in the burned ash soil. Total phosphorus increased by 300% after the fire
but decreased again 2 months later. Also water-soluble P increased up to November and then decreased to the levels of the
unburned soils. The same was true for electrical conductivity and pH, increasing immediately after the fire and then leveling
off again.
This increase in nutrient levels in the “ash soil” was reflected in the striking increase in shoot and root biomass and in
the content of N, P, Mg, K, Ca, Zn and Fe in wheat and clover plants grown in pots in these soils. These nutrient levels were
much higher in the wheat plants, which also produced 12 times more seeds in the “ash soil.”
It seems that fire in these pine forests causes a short-term flush of the mineral elements in the upper “ash soil” layer which
is reverted gradually via the herbaceous post-fire to the ecosystem. 相似文献
12.
Dissolved organic matter quantity and quality from freshwater and saltwater lakes in east-central Alberta 总被引:3,自引:0,他引:3
Concentrations of dissolved organic matter (DOM) in surface waters of sub-humid to semi-arid lakes in east-central Alberta increase with increasing salinity and water residence time from about 20 to 330 mg L–1 as dissolved organic carbon (DOC). This pattern is opposite to that observed among freshwater lakes spanning a gradient in water residence times, and is probably caused by evaporative concentration of refractory DOM. The proportion of total DOC, operationally defined as humic substances using XAD-8 resin, was high, though similar to surface waters typically referred to as "humic", and independent of salinity. Very long water residence times (hundreds of years) in saline lakes favors evapoconcentration of low-color, low molecular weight DOM, with N-content characteristic of allochthonous DOM. 相似文献
13.
This paper reports on the mean cover, biometric and vitality parameters and mineral nutrient status of wood-sorrel (Oxalis acetosella L.) on the control and experimental plots of a mature Norway spruce stand on acid soil (Höglwald Experiment).On the control plot Oxalis showed relatively poor leaf growth and chloroses on young and older leaf blades. Mineral analyses in the Höglwald and comparative studies on other forest sites indicated a very good to good supply of N and P, a moderate Ca nutrition and very high Mn concentrations of the leaves.The input of dolomitic lime led to a drastic propagation and vitalization of the wood-sorrel. The long-lasting effect of treatment was independent of pH dynamics in the root zone. The leaf chloroses of Oxalis disappeared completely after that treatment. The level of Ca and Mg supply clearly improved, whereas the concentrations of P, N, Mn and Zn diminished. Surprisingly, the K nutrition also improved after liming.Oxalis reacted to acid irrigation (sulfuric acid; pH 2.7-2.8) in comparison to normal watering (pH 5.0-5.5) with a continuous decrease in cover, but without visible leaf necroses. The concentrations of total sulphur, SO4-S and Sorg were raised, while the concentrations of Ca, Mn and Zn of the leaf blades decreased. After termination of acid input a recovery of nutrition occurred and a slow recolonization began. Preceding lime application prevented the growth-inhibiting effect of the acid irrigation.The study leads to the working hypothesis, that Ca nutrition may be the controlling factor for leaf growth and vegetative propagation of Oxalis in the Höglwald Experiment. 相似文献
14.
Takashi Yamanaka 《Mycoscience》1995,36(1):17-23
Organic matter composition (lignin, holocellulose, 50% (v/v) methanol extract, water-soluble carbohydrate (WSC) and phenolics (WSP), petroleum ether extract, and ash) of A0 layer soil treated with 700 g/m2 of urea to promote ammonia fungi was investigated in a Japanese red pine (Pinus densiflora) forest. Nine species of fungi were found during the study period of 18 months after the treatment. Of these, seven species belong to the ammonia fungi. WSC content of the treated soil was lower than that of the control. Methanol extract content increased initially after the treatment, then decreased to below the control level. There were no consistent differences in other components between the treated plot and the control. The abilities to decompose cellulose, lignin, chitin, protein and lipid in 18 strains in 10 species of the ammonia fungi were also screened. Cellulose was not lysed byPseudombrophila deerata, Hebeloma spp. andLaccaria bicolor. Strong lignolytic activity was shown byLyophyllum tylicolor, Coprinus echinosporus andP. deerata. Chitin was decomposed byAmblyosporium botrytis, L. tylicolor, C. echinosporus andHebeloma vinosophyllum. All strains possessed proteolytic and lipolytic activities. Supply of glucose to the culture media resulted in weaker enzyme activities except for lignolytic ability. 相似文献
15.
人为干扰对鼎湖山马尾松林土壤细根和有机质的影响 总被引:4,自引:2,他引:4
通过处理 (根据当地习惯收割凋落物和林下层 )和保护 (无任何人为干扰 )样地的比较试验 ,1990~ 1995年期间研究了人为干扰对鼎湖山生物圈保护区马尾松 (Pinus massoniana)林土壤细根和有机质的影响。在此 5 a的研究期间 ,由于人为干扰活动而直接从处理样地取走的林下层和凋落物总量为 2 1.7t/ hm2。在保护样地 ,林下层生物量从 2 .2 t/ hm2增加至 11.10 t/ hm2 ,地表凋落物 (包括枯死的林下层 )量则从 3.0 t/ hm2 增加至 13.3t/ hm2 。收割林下层和凋落物这种人为干扰活动对林地土壤细根生物量的影响不明显 ,但却显著降低土壤轻腐殖质 (Soil lightorganic matter)量。在细根分解过程中 ,其分解速率在处理样地(试验结束时细根残存量占起始量的 4 0 .8% )显著高于在保护样地 (试验结束时细根残存量占起始量的 4 4 .3% ) ;与 Ca、Mg和K元素不同 ,N和 P两种元素的释放速率在处理样地显著高于保护样地 ,表明这种人为干扰活动不仅直接取走所收割的林下层和凋落物中的养分 ,而且还可能增加林地有效养分的流失潜力 相似文献
16.
林床清理对落叶松(Larix gmelinii)人工林土壤呼吸和物理性质的影响 总被引:5,自引:0,他引:5
林下可再生生物质资源的利用是当今森林资源利用的热点,通过林床清理可以获得廉价可再生生物质资源,但其对林分土壤碳收支的影响尚不清楚。运用红外气体分析法(IRGA法)连续两年观测了林床清理对落叶松(Larix gmelinii)人工林土壤呼吸及物理性质的影响,并估算了林床清理生物质资源利用对落叶松人工林碳收支的影响。结果表明:林床清理能够降低落叶松人工林的土壤呼吸,2a的平均值由2.20μmol·m^-2s^-1降低到1.18μmol·m^-2s^-1,平均降低幅度1.02μmol·m^-2s^-1,年呼吸总量由41.2μmol·m^-2a^-1降至22.4μmol·m^-2a^-1,而且,使土壤呼吸Q10值从2.33降低到2.22,R0值从0.61μmol·m^-2s^-1降至0.36μmol·m^-2s^-1;林床清理能够使林床土壤温度冬季低于对照,而夏季则有相反趋势,清理使得林床土壤湿度变化幅度加大,而且秋季和春季较对照低,而夏季偏高;林床清理使得表层土壤容重要比对照未清理样地高53%(P〈0.05),土壤非毛管孔隙度比未处理样地低49.5%(P〈0.001),毛管孔隙度较对照未清理降低约15%(P〈0.001)。林床清理导致林下生物质资源所储藏的碳非呼吸性释放约175.0mol·m^-2,当考虑到林床清理导致的土壤呼吸的降低作用时,所测定的2a内土壤净碳支出由175.0mol·m^-2降低至137.4mol·m^-2。林床清理措施增加生物质资源利用和其所导致的土壤呼吸释放减少,能够减少非冉生资源利用导致的碳释放压力。但仍然需要注意到林床清理使得土壤物理结构发生改变,可能不利于落叶松的生长和落叶松林生态系统的稳定。 相似文献
17.
重金属污染对土壤有机质积累的影响 总被引:1,自引:0,他引:1
采用田间采样分析与室内培养试验相结合的方法,研究了不同重金属污染土壤中有机质积累的差异及重金属污染强度对土壤有机质矿化动态变化的影响.结果表明:污染土壤中重金属的大量积累可减弱有机物质的矿化速率,增加土壤有机质的积累.土壤中颗粒态有机质及其占总有机碳的比例随重金属积累的增加而增加;而微生物生物量碳占总碳的比例却随土壤重金属污染水平的提高而下降.污染土壤中颗粒态有机质对重金属有显著的富集,这可能是影响土壤有机物质进一步矿化的原因之一.重金属污染可改变土壤有机质的矿化速率,影响土壤有机质的积累与分配. 相似文献
18.
Björn Erhagen Mats Öquist Tobias Sparrman Mahsa Haei Ulrik Ilstedt Mattias Hedenström Jürgen Schleucher Mats B. Nilsson 《Global Change Biology》2013,19(12):3858-3871
The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O‐aromatic compounds, and increased with increased contents of alkyl‐ and O‐alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the 13C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate. 相似文献
19.
The effects of watershed liming on the exchange complex of a forest soil were investigated at Woods Lake, in the west-central Adirondack Park, New York. Attempts to neutralize lake acidity via direct application of calcite during the 1980"s were short-lived due to a short hydraulic retention time. The Experimental Watershed Liming Study (EWLS) was initiated to investigate watershed base addition as a potentially more long-term strategy for mitigation of lake acidity. In this paper we discuss the changes in the exchangeable soil complex which occurred in response to the calcite addition and attempt a mass balance for calcite applied to the watershed.An extensive sampling program was initiated for the watershed study. Soil samples were collected from pits prior to and in the two years following treatment to evaluate changes in soil chemistry. Calcite addition significantly altered the exchange complex in the organic horizon. Increases in pH caused deprotonation of soil organic matter and increases in cation exchange capacity, providing additional exchange sites for the retention of added calcium. Exchangeable acidity decreased to very low values, allowing the base saturation of upper organic horizons to increase to nearly 100 percent.Post-treatment sampling found that approximately 48 percent of the calcite remained undissolved in the soil"s Oe horizon two years later. Dissolution of the calcite was affected by field moisture conditions, with greater dissolution in wetter areas of the watershed. Mass balances calculated for calcium applied to the watershed suggest that only 4 percent of the calcium was removed through the lake outlet. Approximately 96 percent of the calcium applied remained within the watershed; as undissolved calcite, on soil exchange sites or stored in the vegetation, groundwater or surface waters of the watershed. 相似文献
20.
Manoj Menon Sandra Hermle Karim C. Abbaspour Madeleine S. Günthardt-Goerg Sascha E. Oswald Rainer Schulin 《Plant and Soil》2005,271(1-2):227-241
In a three-year factorial lysimeter study in Open Top Chambers (OTCs), we investigated the effect of topsoil pollution by the heavy metals Zn, Cu, and Cd on the water regime of newly established forest ecosystems. Furthermore, we studied the influence of two types of uncontaminated subsoils (acidic vs. calcareous) and two types of irrigation water acidity (ambient rainfall chemistry vs. acidified chemistry) on the response of the vegetation. Each of the eight treatment combinations was replicated four times. The contamination (2700 mg kg–1 Zn, 385 mg kg–1 Cu and 10 mg kg–1 Cd) was applied by mixing filter dust from a non-ferrous metal smelter into the upper 15 cm of the soil profile, consisting of silty loam (pH 6.5). The same vegetation was established in all 32 lysimeters. The model forest ecosystem consisted of seedlings of Norway spruce (Picea abies), willow (Salix viminalis), poplar (Populus tremula) and birch (Betula pendula) trees and a variety of herbaceous understorey plants. Systematic and significant effects showed up in the second and third growing season after canopies had closed. Evapotranspiration was reduced in metal contaminated treatments, independent of the subsoil type and acidity of the irrigation water. This effect corresponded to an even stronger reduction in root growth in the metal treatments. In the first two growing seasons, evapotranspiration was higher on the calcareous than on the acidic subsoil. In the third year the difference disappeared. Acidification of the irrigation water had no significant effect on water consumption, although a tendency to enhance evapotranspiration became increasingly manifest in the second and third year. Soil water potentials indicated that the increasing water consumption over the years was fed primarily by intensified extraction of water from the topsoil in the lysimeters with acidic subsoil, whereas also lower depths became strongly exploited in the lysimeters with calcareous subsoil. These patterns agreed well with the vertical profiles of fine root density related with the two types of subsoil. Leaf transpiration measurements and biomass samples showed that different plant species in part responded quite differently and occasionally even in opposite ways to the metal treatments and subsoil conditions. They suggest that the year-to-year changes in treatment effects on water consumption and extraction patterns were related to differences in growth dynamics, as well as to shifts in competitiveness of the various species. Results showed that the uncontaminated subsoil offered a possibility to compensate the reduction in root water extraction in the topsoil under drought, as well as metal stress. 相似文献