首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribonuclease P RNA is the catalytic moiety of the ribonucleoprotein enzyme that endonucleolytically cleaves precursor sequences from the 5' ends of pre-tRNAs. The bacterial RNase P RNA-tRNA complex was examined with a footprinting approach, utilizing chemical modification to determine RNase P RNA nucleotides that potentially contact tRNA. RNase P RNA was modified with dimethylsulfate or kethoxal in the presence or absence of tRNA, and sites of modification were detected by primer extension. Comparison of the results reveals RNase P bases that are protected from modification upon binding tRNA. Analyses were carried out with RNase P RNAs from three different bacteria: Escherichia coli, Chromatium vinosum and Bacillus subtilis. Discrete bases of these RNAs that lie within conserved, homologous portions of the secondary structures are similarly protected. One protection among all three RNAs was attributed to the precursor segment of pre-tRNA. Experiments using pre-tRNAs containing precursor segments of variable length demonstrate that a precursor segment of only 2-4 nucleotides is sufficient to confer this protection. Deletion of the 3'-terminal CCA sequence of tRNA correlates with loss of protection of a particular loop in the RNase P RNA secondary structure. Analysis of mutant tRNAs containing sequential 3'-terminal deletions suggests a relative orientation of the bound tRNA CCA to that loop.  相似文献   

2.
Gel retardation analysis of E. coli M1 RNA-tRNA complexes.   总被引:5,自引:0,他引:5       下载免费PDF全文
We have analyzed complexes between tRNA and E. coli M1 RNA by electrophoresis in non-denaturing polyacrylamide gels. The RNA subunit of E. coli RNase P formed a specific complex with mature tRNA molecules. A derivative of the tRNA(Gly), endowed with the intron of yeast tRNA(ile) (60 nt), was employed to improve separation of complexed and unbound M1 RNA. Binding assays with tRNA(Gly) and intron-tRNA(Gly) as well as analysis of intron-tRNA/M1 RNA complexes on denaturing gels showed that one tRNA is bound per molecule of M1 RNA. A tRNA carrying a truncation as small as the 5'-nucleotide had a strongly reduced affinity to M1 RNA and was also a weak competitor in the cleavage reaction, suggesting that nucleotide +1 is a major determinant of tRNA recognition and that the thermodynamically stable tRNA-M1 RNA complex is relevant for enzyme function. Binding was shown to be dependent on the M1 RNA concentration in a cooperative fashion. Only a fraction of M1 RNAs (50-60%) readily formed a complex with intron-tRNA(Gly), indicating that distinct conformational subpopulations of M1 RNA may exist. Formation of the M1 RNA-tRNA(Gly), complex was very similar at 100 mM Mg++ and Ca++, corroborating earlier data that Ca++ is competent in promoting M1 RNA folding and tRNA binding. Determination of apparent equilibrium constants (app Kd) for tRNA(Gly) as a function of the Mg++ concentration supports an uptake of at least two additional Mg++ ions upon complex formation. At 20-30 mM Mg++, highest cleavage rates but strongly reduced complex formation were observed. This indicates that tight binding of the tRNA to the catalytic RNA at higher magnesium concentrations retards product release and therefore substrate turnover.  相似文献   

3.
We have detected by nucleotide analog interference mapping (NAIM) purine N7 functional groups in Escherichia coli RNase P RNA that are important for tRNA binding under moderate salt conditions (0.1 M Mg2+, 0.1 M NH4+). The majority of identified positions represent highly or universally conserved nucleotides. Our assay system allowed us, for the first time, to identify c7-deaza interference effects at two G residues (G292, G306). Several c7-deazaadenine interference effects (A62, A65, A136, A249, A334, A351) have also been identified in other studies performed at very different salt concentrations, either selecting for substrate binding in the presence of 0.025 M Ca2+ and 1 M NH4+ or self-cleavage of a ptRNA-RNase P RNA conjugate in the presence of 3 M NH4+ or Na+. This indicates that these N7 functional groups play a key role in the structural organization of ribozyme-substrate and -product complexes. We further observed that a c7-deaza modification at A76 of tRNA interferes with tRNA binding to and ptRNA processing by E. coli RNase P RNA. This finding combined with the strong c7-deaza interference at G292 of RNase P RNA supports a model in which substrate and product binding to E. coli RNase P RNA involves the formation of intermolecular base triples (A258-G292-C75 and G291-G259-A76).  相似文献   

4.
A synthetic tRNA precursor analog containing the structural elements of Escherichia coli tRNA(Phe) was characterized as a substrate for E. coli ribonuclease P and for M1 RNA, the catalytic RNA subunit. Processing of the synthetic precursor exhibited a Mg2+ dependence quite similar to that of natural tRNA precursors such as E. coli tRNA(Tyr) precursor. It was found that Sr2+, Ca2+, and Ba2+ ions promoted processing of the dimeric precursor at Mg2+ concentrations otherwise insufficient to support processing; very similar behavior was noted for E. coli tRNA(Tyr). As noted previously for natural tRNA precursors, the absence of the 3'-terminal CA sequence in the synthetic precursor diminished the facility of processing of this substrate by RNase P and M1 RNA. A study of the Mg2+ dependence of processing of the synthetic tRNA dimeric substrate radiolabeled between C75 and A76 provided unequivocal evidence for an alteration in the actual site of processing by E. coli RNase P as a function of Mg2+ concentration. This property was subsequently demonstrated to obtain (Carter, B. J., Vold, B.S., and Hecht, S. M. (1990) J. Biol. Chem. 265, 7100-7103) for a mutant Bacillus subtilis tRNAHis precursor containing a potential A-C base pair at the end of the acceptor stem.  相似文献   

5.
We have studied the base-pairing between the 3'-terminal CCA motif of a tRNA precursor and RNase P RNA by a phylogenetic mutational comparative approach. Thus, various derivatives of the Escherichia coli tRNA(Ser)Su1 precursor harboring all possible substitutions at either the first or the second C of the 3'-terminal CCA motif were generated. Cleavage site selection on these precursors was studied using mutant variants of M1 RNA, the catalytic subunit of E. coli RNase P, carrying changes at positions 292 or 293, which are involved in the interaction with the 3'-terminal CCA motif. From our data we conclude that these two C's in the substrate interact with the well-conserved G292 and G293 through canonical Watson-Crick base-pairing. Cleavage performed using reconstituted holoenzyme complexes suggests that this interaction also occurs in the presence of the C5 protein. Furthermore, we studied the interaction using various derivatives of RNase P RNAs from Mycoplasma hyopneumoniae and Mycobacterium tuberculosis. Our results suggest that the base-pairing between the 3'-terminal CCA motif and RNase P is present also in other bacterial RNase P-substrate complexes and is not limited to a particular bacterial species.  相似文献   

6.
Redman KL 《Biomacromolecules》2006,7(12):3321-3326
This work reveals that mutant forms of RNA methyltransferases that form 5-methylcytosine (m5C) have characteristics that may make them useful for biomacromolecular assembly. The experiments utilized bacterially expressed Trm4p, a tRNA methyltransferase cloned from Saccharomyces cerevisiae. Like DNA m5C methyltransferases, Trm4p mediates methylation using a covalent intermediate, which would allow Trm4p to be trapped as a stable protein-RNA complex when the substrate RNA contains a modified cytosine base such as 5-fluorocytosine. However, mutant forms of Trm4p are identified that fail to release RNA resulting in the formation of denaturant stable methyltransferase-RNA complexes that contain only natural nucleotides. The ability to form stable complexes with natural RNA gives these mutant forms of Trm4p greater potential versatility for biomacromolecule construction applications than the wild-type Trm4p enzyme or DNA methyltransferases for which the trapping of the covalent intermediate requires the presence of a nucleotide analogue at the site of modification.  相似文献   

7.
We suggested previously that a purine at the discriminator base position in a tRNA precursor interacts with the well-conserved U294 in M1 RNA, the catalytic subunit of Escherichia coli RNase P. Here we investigated this interaction and its influence on the kinetics of cleavage as well as on cleavage site selection. The discriminator base in precursors to tRNA(Tyr)Su3 and tRNA(Phe) was changed from A to C and cleavage kinetics were studied by wild-type M1 RNA and a mutant M1 RNA carrying the compensatory substitution of a U to a G at position 294 in M1 RNA. Our data suggest that the discriminator base interacts with the residue at position 294 in M1 RNA. Although product release is a rate-limiting step both in the absence and in the presence of this interaction, its presence results in a significant reduction in the rate of product release. In addition, we studied cleavage site selection on various tRNA(His) precursor derivatives. These precursors carry a C at the discriminator base position. The results showed that the mutant M1 RNA harboring a G at position 294 miscleaved a wild-type tRNA(His) precursor and a tRNA(His) precursor carrying an inosine at the cleavage site. The combined data suggest a functional interaction between the discriminator base and the well-conserved U294 in M1 RNA. This interaction is suggested to play an important role in determining the rate of product release during multiple turnover cleavage of tRNA precursors by M1 RNA as well as in cleavage site selection.  相似文献   

8.
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.  相似文献   

9.
The recognition by RNase P of precursor tRNAs   总被引:9,自引:0,他引:9  
We have generated mutants of M1 RNA, the catalytic subunit of Escherichia coli RNaseP, and have analyzed their properties in vitro and in vivo. The mutations, A333----C333, A334----U334, and A333 A334----C333 U334 are within the sequence UGAAU which is complementary to the GT psi CR sequence found in loop IV of all E. coli tRNAs. We have examined: 1) whether the mutant M1 RNAs are active in processing wild type tRNA precursors and 2) whether they can restore the processing defect in mutant tRNA precursors with changes within the GT psi CR sequence. As substrates for in vitro studies we used wild type E. coli SuIII tRNA(Tyr) precursor, and pTyrA54, a mutant tRNA precursor with a base change that could potentially complement the U334 mutation in M1 RNA. The C333 mutation had no effect on activity of M1 RNA on wild type pTyr. The U334 mutant M1 RNA, on the other hand, had a much lower activity on wild type pTyr. However, use of pTyrA54 as substrate instead of wild type pTyr did not restore the activity of the U334 mutant M1 RNA. These results suggest that interactions via base pairing between nucleotides 331-335 of M1 RNA and the GT psi CG of pTyr are probably not essential for cleavage of these tRNA precursors by M1 RNA. For assays of in vivo function, we examined the ability of mutant M1 RNAs to complement a ts mutation in the protein component of RNaseP in FS101, a recA- derivative of E. coli strain A49. In contrast to wild type M1 RNA, which complements the ts mutation when it is overproduced, neither the C333 nor the U334 mutant M1 RNAs was able to do so.  相似文献   

10.
11.
RNase P with its catalytic RNA subunit is involved in the processing of a number of RNA precursors with different structures. However, precursor tRNAs are the most abundant substrates for RNase P. Available data suggest that a tRNA is folded into its characteristic structure already at the precursor state and that RNase P recognizes this structure. The tRNA D-/T-loop domain (TSL-region) is suggested to interact with the specificity domain of RNase P RNA while residues in the catalytic domain interact with the cleavage site. Here, we have studied the consequences of a productive interaction between the TSL-region and its binding site (TBS) in the specificity domain using tRNA precursors and various hairpin-loop model substrates. The different substrates were analyzed with respect to cleavage site recognition, ground-state binding, cleavage as a function of the concentration of Mg(2+) and the rate of cleavage under conditions where chemistry is suggested to be rate limiting using wild-type Escherichia coli RNase P RNA, M1 RNA, and M1 RNA variants with structural changes in the TBS-region. On the basis of our data, we conclude that a productive TSL/TBS interaction results in a conformational change in the M1 RNA substrate complex that has an effect on catalysis. Moreover, it is likely that this conformational change comprises positioning of chemical groups (and Mg(2+)) at and in the vicinity of the cleavage site. Hence, our findings are consistent with an induced-fit mechanism in RNase P RNA-mediated cleavage.  相似文献   

12.
The kinetic constants for cleavage of the tRNA(Tyr)Su3 precursor by the M1 RNA of E. coli RNase P were determined in the absence and presence of the C5 protein under single and multiple (steady state) turnover conditions. The rate constant of cleavage in the reaction catalyzed by M1 RNA alone was 5 times higher in single turnover than in multiple turnovers, suggesting that a rate-limiting step is product release. Cleavage by M1 RNA alone and by the holoenzyme under identical buffer conditions demonstrated that C5 facilitated product release. Addition of different product-like molecules under single turnover reaction conditions inhibited cleavage both in the absence and presence of C5. In the presence of C5, the Ki value for matured tRNA was approximately 20 times higher than in its absence, suggesting that C5 also reduces the interaction between the 5'-matured tRNA and the enzyme. In a growing cell the number of tRNA molecules is approximately 1000 times higher than the number of RNase P molecules. A 100-fold excess of matured tRNA over enzyme clearly inhibited cleavage in vitro. We discuss the possibility that RNase P is involved in the regulation of tRNA expression under certain growth conditions.  相似文献   

13.
14.
Modified nucleotides are universally conserved in all living kingdoms and are present in almost all types of cellular RNAs, including tRNA, rRNA, sn(sno)RNA, and mRNA and in recently discovered regulatory RNAs. Altogether, over 110 chemically distinct RNA modifications have been characterized and localized in RNA by various analytical methods. However, this impressive list of known modified nucleotides is certainly incomplete, mainly due to difficulties in identification and characterization of these particular residues in low abundance cellular RNAs. In DNA, modified residues are formed by both enzymatic reactions (like DNA methylations, for example) and by spontaneous chemical reactions resulting from oxidative damage. In contrast, all modified residues characterized in cellular RNA molecules are formed by specific action of dedicated RNA-modification enzymes, which recognize their RNA substrate with high specificity. These RNA-modification enzymes display a great diversity in terms of the chemical reaction and use various low molecular weight cofactors (or co-substrates) in enzymatic catalysis. Depending on the nature of the target base and of the co-substrate, precise chemical mechanisms are used for appropriate activation of the base and the co-substrate in the enzyme active site. In this review, we give an extended summary of the enzymatic mechanisms involved in formation of different methylated nucleotides in RNA, as well as pseudouridine residues, which are almost universally conserved in all living organisms. Other interesting mechanisms include thiolation of uridine residues by ThiI and the reaction of guanine exchange catalyzed by TGT. The latter implies the reversible cleavage of the N-glycosidic bond in order to replace the initially encoded guanine by an aza-guanosine base. Despite the extensive studies of RNA modification and RNA-modification machinery during the last 20 years, our knowledge on the exact chemical steps involved in catalysis of RNA modification remains very limited. Recent discoveries of radical mechanisms involved in base methylation clearly demonstrate that numerous possibilities are used in Nature for these difficult reactions. Future studies are certainly required for better understanding of the enzymatic mechanisms of RNA modification, and this knowledge is crucial not only for basic research, but also for development of new therapeutic molecules.  相似文献   

15.
We analyzed processing of precursor tRNAs carrying a single 2'-deoxy, 2'-OCH(3), or locked nucleic acid (LNA) modification at G+1 by Escherichia coli RNase P RNA in the absence and presence of its protein cofactor. The extra methyl or methylene group caused a substrate binding defect, which was rescued at higher divalent metal ion (M(2+)) concentrations (more efficiently with Mn(2+) than Mg(2+)), and had a minor effect on cleavage chemistry at saturating M(2+) concentrations. The 2'-OCH(3) and LNA modification at G+1 resulted in higher metal ion cooperativity for substrate binding to RNase P RNA without affecting cleavage site selection. This indicates disruption of an M(2+) binding site in enzyme-substrate complexes, which is compensated for by occupation of alternative M(2+) binding sites of lower affinity. The 2'-deoxy modification at G+1 caused at most a two-fold decrease in the cleavage rate; this mild defect relative to 2'-OCH(3) and LNA at G+1 indicates that the defect caused by the latter two is steric in nature. We propose that the 2'-hydroxyl at G+1 in the substrate is in the immediate vicinity of the M(2+) cluster at the phosphates of A67 to U69 in helix P4 of E. coli RNase P RNA.  相似文献   

16.
L Odell  V Huang  M Jakacka    T Pan 《Nucleic acids research》1998,26(16):3717-3723
The ribozyme from bacterial ribonuclease P recognizes two structural modules in a tRNA substrate: the T stem-loop and the acceptor stem. These two modules are connected through a helical linker. The T stem-loop binds at a surface confined in a folding domain away from the active site. Substrates for the Bacillus subtilis RNase P RNA were previously selected in vitro that are shown to bind comparably well or better than a tRNA substrate. Chemical modification of P RNA-substrate complexes with dimethylsulfate and kethoxal was performed to determine how the P RNA recognizes three in vitro selected substrates. All three substrates bind at the surface known to interact with the T stem-loop of tRNA. Similar to a tRNA, the secondary structure of these substrates contains a helix around the cleavage site and a hairpin loop at the corresponding position of the T stem-loop. Unlike a tRNA, these two structural modules are connected through a non-helical linker. The two structural modules in the tRNA and in the selected substrates bind to two different domains in P RNA. The properties of substrate recognition exhibited by this ribozyme may be exploited to isolate new ribozyme-substrate pairs with interactive structural modules.  相似文献   

17.
The presence of high-molecular-weight complexes of aminoacyl-tRNA synthetases in Escherichia coli has been reported (C. L. Harris, J. Bacteriol. 169:2718-2723, 1987). In the current study, Bio-Gel A-5M gel chromatography of 105,000 x g supernatant preparations from E. coli Q13 indicated high molecular weights for both tRNA methylase (300,000) and tRNA sulfurtransferase (450,000). These tRNA modification enzymes did not appear to exist in the same multienzymic complex. On the other hand, 4-thiouridine sulfurtransferase eluted with aminoacyl-tRNA synthetase activity on Bio-Gel A-5M, and both of these activities were cosedimented after further centrifugation of cell supernatants at 160,000 x g for 18 h. Despite this evidence for association of the sulfurtransferase with the synthetase complex, isoleucyl-tRNA synthetase and tRNA sulfurtransferase were totally resolved from each other by DEAE-Sephacel chromatography. Subsequent gel chromatography showed little change in their elution positions on agarose. Hence, either nonspecific aggregation occurred here, or the modification enzymes studied are not members of the aminoacyl-tRNA synthetase complex in E. coli. These findings do suggest that some bacterial tRNA modification enzymes are present in multiprotein complexes of high molecular weight.  相似文献   

18.
RNase P is responsible for the maturation of the 5'-termini of tRNA molecules in all cells studied to date. This ribonucleoprotein has to recognize and identify its cleavage site on a large number of different precursors. This review covers what is currently known about the function of the catalytic subunit of Escherichia coli RNase P, M1 RNA, and the protein subunit, C5, in particular with respect to cleavage-site selection. Recent genetic and biochemical data show that the two C residues in the 3'-terminal CCA sequence of a precursor interact with the enzyme through Watson-Crick base-pairing. This is suggested to result in unfolding of the amino acid acceptor-stem and exposure of the cleavage site. Furthermore, other close contact points between M1 RNA and its substrate have recently been identified. These data, together with the two existing three-dimensional structure models of M1 RNA in complex with its substrate, establish a platform that will enable us to seek an understanding of the underlying mechanism of cleavage by this elusive enzyme.  相似文献   

19.
20.
Using an RNA footprinting technique, accessible sites on the mRNA initiation region bound to the ribosome have been determined. Chemical probing experiments have been done both in the presence and absence of the initiator tRNA with dimethyl sulfate, kethoxal and carbodiimide as reagent probes. As an mRNA, a mini-mRNA containing the initiation region of bacteriophage lambda gene cro has been used. This region is characterized by a long single-stranded Shine-Dalgarno (SD) sequence followed by two hairpin structures of which the first one comprises in its loop the initiation codon. As compared to a free mRNA, the only nucleotides additionally protected in the binary mRNA-ribosome complex have been those which belong to the S-D sequence and the initiation codon. The protection of other nucleotides has not changed. Addition of the initiator RNA results in the modification of nucleotides in the stems of the downstream hairpin structures of the initiation region. This reflects their transition into a single-stranded conformation promoted by tRNA. A possible implication of these findings for the decoding process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号