首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scatchard analysis of3H-guanosine diphosphate (GDP) binding to rat brown-adipose-tissue mitochondria demonstrated that binding to the high- and low-affinity sites (Kd=0.05 and 2.0 M) was abolished by denaturation at 100°C but non-specific binding remained constant (0.2% of free-GDP). Prior incubation of mitochondria at 37°C reduced binding to the high-affinity site, but this could be reversed by incubating samples at 0°C. Addition of palmitic acid (5–40 nmole/mg of mitochondrial protein) did not affect GDP-binding, but similar concentrations of palmitoyl CoA caused a slight reduction in the number of high-affinity sites and a significant decrease in the number of lower-affinity sites. Acute treatments known to stimulate thermogenesis in vivo (a single meal, cold exposure, or noradrenaline injection 40–80 min before sacrifice) all increased binding to both binding sites, and tended to raise the dissociation constants, whereas injection of 2-deoxy-D-glucose, which depresses metabolic rate in the rat, decreased dissociation constants of both sites and the maximum number of high-affinity sites. These data indicate that both GDP-binding sites respond rapidly to acute thermogenic stimuli, possibly due to conformational changes in the mitochondrial inner membrane, and that palmitoyl CoA may influence mitochondrial proton conductance via an association with purine nucleotide binding sites.  相似文献   

2.
Binding characteristics of benzodiazepine receptors were studied with synaptosomal and microsomal membranes from rabbit brain invitro utilizing [methyl-3H]diazepam. In synaptosomal membranes, both high and low affinity binding sites were identified with the dissociation constants (Kd) of 4.92 nM and 83.8 nM, respectively. However, only the high affinity site was identified with Kd of 3.96 nM with microsomal membranes. Benzodiazepine binding sites appear to include at least two subpopulations of receptors, one with high affinity and another with low affinity binding site.  相似文献   

3.
This study has identified specific, stereoselective phenylalkylamine (PAA, (±)- [3H]verapamil) binding sites of low-affinity and high-density in cockroach (Periplaneta americana) nervous system and skeletal muscle membranes. Scatchard transformation of equilibrium binding data revealed a single population of binding sites in both tissues with dissociation constants (Kd) of 273 nM and 377 nM and binding capacities (Bmax) of 23 pmol·mg protein?1 and 37pmol·mg protein?1 for cockroach nervous tissue and skeletal muscle membranes, respectively. The PAA binding site in cockroach nervous tissue membranes was found to be dihydropyridine (DHP)-insensitive, whereas the corresponding site in cockroach skeletal muscle membranes was DHP-sensitive. This property of a DHP-sensitive PAA receptor distinguishes the binding sites identified in cockroach skeletal muscle from those in cockroach nervous tissue and indicates that pharmacologically distinct putative Ca2+ channel subtypes are present in insect nerve and muscle. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The binding of low concentrations of [3H](?)apomorphine to preparations of calf and rat forebrain tissue was evaluated. Fractionation of crude homogenates to prepare a membrane fraction (P4) of striatal or caudate homogenates increased the proportion of saturable to total binding from 33% to over 80%, and increased the apparent density of binding sites from 94 to 681 fmol/mg protein. Binding in calf caudate P4 tissue was protein-dependent and optimal at pH = 7.0 to 7.5, and T = 20 to 25°C; at higher temperatures tissue binding sites appeared to degrade. The half-time of association and dissociation at 22°C were, respectively, 14.0 and 18.5 min; equilibration was complete in 60 min. Kinetic characteristics of high-affinity binding obtained from association and dissociation constants and from saturation isotherms were similar (Kd = 2.1 to 3.4 nM). The pharmacology of competition for 3H-APO suggests selectivity for dopamine-agonist interactions. These results indicate that the P4 membrane preparation may be useful for the evaluation of dopamine-agonist binding sites or “receptors.”  相似文献   

5.
A crude membrane preparation from the supraoesophageal ganglion of the locust (Schistocerca gregaria) shows specific binding of muscarinic cholinergic ligands. Analysis of the kinetics of binding reveals the presence of at least two binding sites with dissociation constants, Kd of 0.76 and 37.7 nM. The pharmacological profile of the higher affinity site is different from that seen for muscarinic receptor sites in mammalian brain.The binding sites reported here are quite distinct from nicotinic-like receptor sites in the same tissue and lend further support to suggestions that there are at least two types of acetylcholine receptors in insects.  相似文献   

6.
Tania Bizouarn  Tina Bhakta 《BBA》2005,1708(3):404-410
Transhydrogenase (E.C. 1.6.1.1) couples the redox reaction between NAD(H) and NADP(H) to the transport of protons across a membrane. The enzyme is composed of three components. The dI and dIII components, which house the binding site for NAD(H) and NADP(H), respectively, are peripheral to the membrane, and dII spans the membrane. We have estimated dissociation constants (Kd values) for NADPH (0.87 μM), NADP+ (16 μM), NADH (50 μM), and NAD+ (100-500 μM) for intact, detergent-dispersed transhydrogenase from Escherichia coli using micro-calorimetry. This is the first complete set of dissociation constants of the physiological nucleotides for any intact transhydrogenase. The Kd values for NAD+ and NADH are similar to those previously reported with isolated dI, but the Kd values for NADP+ and NADPH are much larger than those previously reported with isolated dIII. There is negative co-operativity between the binding sites of the intact, detergent-dispersed transhydrogenase when both nucleotides are reduced or both are oxidised.  相似文献   

7.
The sensitivity of acetylcholine receptor to eleven cholinergic drugs, phospholipase A, heat and pH provided evidence that the so-called high-affinity binding (Kd for acetylcholine 11 nm in 1% Triton) and low-affinity binding (Kd 562 nm) were related to two distinct binding sites. The low-affinity binding site was less sensitive to heat and several of the cholinergic drugs, but was a little more sensitive to bungarotoxin than the high-affinity site. Zinc (0.4 mm) and EDTA (10 mm) abolished acetylcholine binding to both sites; the EDTA inhibition was time-dependent.  相似文献   

8.
Summary Time courses of phlorizin binding to the outside of membrane vesicles from porcine renal outer cortex and outer medulla were measured and the obtained families of binding curves were fitted to different binding models. To fit the experimental data a model with two binding sites was required. Optimal fits were obtained if a ratio of low and high affinity phlorizin binding sites of 1:1 was assumed. Na+ increased the affinity of both binding sites. By an inside-negative membrane potential the affinity of the high affinity binding site (measured in the presence of 3 mM Na+) and of the low affinity binding site (measured in the presence of 3 or 90 mM Na+) was increased. Optimal fits were obtained when the rate constants of dissociation were not changed by the membrane potential. In the presence of 90 mM Na+ on both membrane sides and with a clamped membrane potential,K D values of 0.4 and 7.9 M were calculated for the low and high affinity phlorizin binding sites which were observed in outer cortex and in outer medulla. Apparent low and high affinity transport sites were detected by measuring the substrate dependence ofd-glucose uptake in membrane vesicles from outer cortex and outer medulla which is stimulated by an initial gradient of 90 mM Na+(out>in). Low and high affinity transport could be fitted with identicalK m values in outer cortex and outer medulla. An inside-negative membrane potential decreased the apparentK m ofhigh affinity transport whereas the apparentK m of low affinity transport was not changed. The data show that in outer cortex and outer medulla of pighigh and low affinity Na+-d-glucose cotransporters are present which containlow and high affinity phlorizin binding sites, respectively. It has to be elucidated from future experiments whether equal amounts of low and high affinity transporters are expressed in both kidney regions or whether the low and high affinity transporter are parts of the same glucose transport moleculc.  相似文献   

9.
Lactobacillus casei cells grown in the presence of limiting folate contained large amounts of a membrane-associated binding protein which mediates folate transport. Binding to this protein at 4°C was time and concentration dependent and at low levels (1 to 10 nM) of folate required 60 min to reach a steady state. The apparent dissociation constant (Kd) for folate was 1.2 nM at pH 7.5 in 100 mM K-phosphate buffer, and it varied by less than twofold when measured over a range of pH values (5.5 to 7.5) or in buffered salt solutions of differing ionic compositions. Conversely, removal of ions and their replacement with isotonic sucrose (pH 7.5) led to a 200-fold reduction in binding affinity for folate. Restoration of the high-affinity state of the binding protein could be achieved by the readdition of various cations to the sucrose medium. Kd measurements over a range of cation concentrations revealed that a half-maximal restoration of binding affinity was obtained with relatively low levels (10 to 50 μM) of divalent cations (e.g., Ca2+, Mg2+, and ethylenediammonium2+ ions). Monovalent cations (e.g., Na+, K+, and Tris+) were also effective, but only at concentrations in the millimolar range. The Kd for folate reached a minimum of 0.6 nM at pH 7.5 in the presence of excess CaCl2. In cells suspended in sucrose, the affinity of the binding protein for folate increased 20-fold by decreasing the pH from 7.5 to 4.5, indicating that protons can partially fulfill the cation requirement. These results suggest that the folate transport protein of L. casei may contain both a substrate- and cation-binding site and that folate binds with a high affinity only after the cation-binding site has been occupied. The presence of these binding sites would support the hypothesis that folate is transported across the cell membrane via a cation-folate symport mechanism.  相似文献   

10.
In vivo effects of chronic lithium administration on dopaminergic and serotonergic receptor binding were studied in the striatum and cerebral cortex of the rat. [3H]Domperidone was used as the ligand for the dopaminergic receptor, and [3H]ketanserin for the serotonergic system. Long-term ingestion of lithium (2–3 months) resulted in high levels of lithium in the cerebral cortex and significantly higher potassium levels; the sodium content remained at normal levels. The kinetic constants (K d andB max) of [3H]domperidone binding sites measured in the striatum did not show any deviation from control values, but the receptor concentration (B max) of [3H]ketanserin binding sites was significantly reduced in the cerebral cortex of lithium-treated rats. The apparent dissociation constant (K d) was not changed. The results indicate that the serotonergic component of the [3H]spiperone binding site, which we had previously found to be affected by chronic lithium treatment and which was shown by Peroutka and Snyder (1) to be the 5-HT2 receptor, is selectively affected by lithium.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

11.
《Insect Biochemistry》1990,20(6):557-566
[125I]α-Bungarotoxinisusedasaprobetostudythenicotinic-cholinergicreceptorinmembrane preparations of the cockroach brain. Binding is restricted mainly to particulate fractions of brain homogenates, is time dependent and is saturable above 2 nM with very low non-specific binding. Scatchard analysis indicates that binding is associated with a single affinity site (Kd = 1.09 nM) having a Bmax of 8926 fmol/mg protein which is the highest concentration of binding sites yet reported in insects. Association kinetics are best fit by a mono-exponential model with a kobs = 4.37 × 10−3s−1. Dissociation is best described by a bi-exponential model giving dissociation constants of 1.18 × 10−5 and 9.94 × 10−5s−1. The Kds calculated from kinetic data are 0.029 and 0.25 nM suggesting the possibility of heterogeneous binding sites not detected by saturation studies. Displacement studies indicate that binding follows a nicotinic pharmacology and demonstrate the high affinity of methyllycaconitine and the anthelmintics, morantel and pyrantel. Displacement by neuronal bungarotoxin shows the presence of two distinct binding sites not differentiated by α-bungarotoxin. Autoradiographic studies show α-bungarotoxin to be binding to neuropile regions of the brain, to be displaced from these regions by agents effective in binding studies and demonstrate that the neuronal bungarotoxin binding sites can be regionally localized.  相似文献   

12.
To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.  相似文献   

13.
Abstract

The affinity spectrum method has been used to analyse binding isotherms for [3H]-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6–1.5 × 10?9, 0.4–1.0 × 10?7 and 7 × 10?6 mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTPrS (guanosine-5′-0-(3-thiotriphosphate) in the incubation medium. The binding parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.  相似文献   

14.
A human thyroid adenoma (benign nodule) was identified which exhibited a linear Scatchard plot of 125I-TSH binding, characteristic of a single class of binding site with high affinity (Kd = 0.5±0.1 nM) and low binding capacity (0.8±0.2 pmol/mg protein). In contrast, Scatchard analysis of binding to adjacent normal thyroid was nonlinear, suggesting the presence of high and low-affinity binding sites with Kd's of 0.4±0.2 and of 27.9±11.0 nM and capacities of 0.7±0.3 and 1.8±1.0 pmol/mg protein, respectively. Dissociation of bound 125I-TSH from membranes of both adenoma and normal tissue revealed identical enhancement of dissociation in the presence of excess native hormone, thought to be evidence for the “negative cooperativity” model of hormone-receptor interaction. Furthermore, adenylate cyclase from both tissues was equally responsive to TSH. Thus, a thyroid adenoma which contains TSH-responsive adenylate cyclase still exhibited enhanced dissociation by native hormone, even though Scatchard analysis yielded a single, non-cooperative class of binding sites. This suggests that enhanced dissociation of bound hormone does not provide a demonstration of negatively-cooperative site-site interaction. Furthermore, nonlinear Scatchard plots, typical of TSH binding in normal thyroid, represent two classes of binding sites, of which the high affinity type is responsible for stimulation of adenylate cyclase.  相似文献   

15.
[3H]Dihydroalprenolol, a potent ß-adrenergic antagonist, was used to identify the adenylate cyclase-coupled ß-adrenoceptors in isolated membranes of rat skeletal muscle. The receptor sites, as revealed [3H]dihydroalprenolol binding, were predominantly localized in plasmalemmal fraction. That skeletal muscle fraction may also contain the plasmalemma of other intramuscular cells, especially that of blood vessels. Hence, the [3H]dihydroalprenolol binding observed in that fraction may be due partly to its binding to the plasmalemma of blood vessels. Small but consistent binding was also observed in sarcoplasmic reticulum and mitochondria. The level of [3H]dihydroalprenolol binding in different subcellular fractions closely correlated with the level of adenylate cyclase present in those fractions.The binding of [3H]dihydroalprenolol to plasmalemma exhibited saturation kinetics. The binding was rapid, reaching equilibrium within 5 min, and it was readily dissociable. From the kinetics of binding, association (K1) and dissociation (K2) rate constants of 2.21 · M? · min?1 and 3.21 · 10?1, respectively, were obtained. The dissociation constant (Kd) of 15 nM for [3H]dihydroalprenolol obtained from saturation binding data closely agreed with the (Kd) derived from the ratio of dissociation and association rate constants (K2/K1).Several β-adrenergic agents known to be active on intact skeletal muscle also competed for [3H]dihydroalprenolol binding sites in isolated plasmalemma with essentially similar selectivity and stereospecificity. Catecholamines competed for [3H]dihydroalprenolol binding sites with a potency of isoproterenol > epinephrine > norepinephrine. A similar order of potency was noted for catecholamines in the activation of adenylate cyclase. Effects of catecholamines were stereospecific, (?)-isomers being more than potent than (+)-isomers. Phenylephrine, an α-adrenergic agonist, showed no effect either on [3H]dihydroalprenolol binding or on adenylate cyclase. Known ß-adrenergic antagonists, propranolol and alprenolol, stereospecifically inhibited the [3H]dihydroalprenolol binding and the isoproterenol-stimulated adenylate cyclase. The (Ki) values for the antagonists determined from inhibition of [3H]dihydroalprenolol binding agreed closely with the (Ki) values obtained from the inhibition of adenylate cyclase. The data suggest that the binding of [3H]dihydroalprenolol in skeletal muscle membranes possess the characteristics of a substance binding to the ß-adrenergic receptor.  相似文献   

16.
The binding constants, K1 and K2, and the number of Ca2+ ions in each of the two high affinity sites of Ca2+-regenerated bacteriorhodopsin (bR) are determined potentiometrically at different pH values in the range of pH 3.5-4.5 by using the Scatchard plot method. From the pH dependence of K1 and K2, it was found that two hydrogen ions are released for each Ca2+ bound to each of the two high affinity sites. Furthermore, we have measured by a direct spectroscopic method the association constant, Ks, for the binding of Ca2+ to deionized bR, which is responsible for producing the blue to purple color change. Comparing the value of Ks and its pH dependence with those of K1 and K2 showed that the site corresponding to Ks is to be identified with that of K2. This is in agreement with the conclusion reached previously, using a different approach, which showed that it is the second Ca2+ that causes the blue to purple color change.

Our studies also show that in addition to the two distinct high affinity sites, there are about four to six sites with lower binding constants. These are attributed to the nonspecific binding in bR.

  相似文献   

17.
Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple‐ligand‐binding system, determining quantitative parameters such as a dissociation constant (Kd) is difficult. Here, we used a method we named CS‐PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β‐lactoglobulin (βLG) and 1‐anilinonaphthalene‐8‐sulfonate (ANS), which is a multiple‐ligand‐binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG–ANS complexes for each binding site. In addition, we determined the Kd values as 3.42 × 10−4M2 and 2.51 × 10−3M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable Kd values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS‐PCA was confirmed to provide not only the positions and the Kd values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein–ligand interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The sensitivity of [3H]GABA and [3H]muscimol high-affinity binding sites to physiological (Krebs-Ringer's bicarbonate) and non-physiological (Tris-citrate) buffers was examined using synaptosomal membranes from bovine retinas. The maximum number of sites (Bmax) for [3H]GABA was present when the tissue was assayed in KRB. With only one exception, this effect was independent of the washing conditions used or a small change in pH. In contrast, [3H]muscimol binding sites were maximally present when the tissue was washed in Tris, regardless of the assaying conditions or the small change in pH. Neither [3H]GABA nor [3H]muscimol was displaced by ( - )baclofen. The apparent dissociation constants (Kd) of the ligands did not change under any of the conditions tested. These findings demonstrate a fundamental difference between GABA and muscimol binding sites.  相似文献   

19.
Adenosine binding sites on 108CC15 neuroblastoma × glioma hybrid cells and rat brain membranes were investigated using [3H]adenosine as labelled ligand. Both the hybrid cells and brain membranes were found to have a high affinity binding site, Kd 0.8 and 3 nM respectively. The same ligand was used to demonstrate two lower affinity binding sites on brain membranes, Kds 1.4 and 29.1 μM and a single low affinity site on the hybrid cells, Kd 2.6 μM. Structure activity studies of the low affinity binding site on hybrid cells showed this to be an ‘R’ adenosine receptor of the A2 subtype. It is concluded that [3H]adenosine can be used to demonstrate both high and low affinity binding sites and that 108CC15 hybrid cells provide a valuable system for studying adenosine receptors.  相似文献   

20.
Zhu G  Jensen RG 《Plant physiology》1991,97(4):1348-1353
Xylulose 1,5-bisphosphate (XuBP) is synthesized from ribulose 1,5-bisphosphate (RuBP) at carbamylated catalytic sites on ribulose 1,5-bisphosphate carboxylase (Rubisco) with significant amounts of XuBP being formed at pH less than 8.0. XuBP has been separated by high performance liquid chromatography and identified by pulsed amperometry from compounds bound to Rubisco during catalysis with the purified enzyme and from celery (Apium graveolens var Utah) leaf extracts. XuBP does not bind tightly to carbamylated sites, but does bind tightly to decarbamylated sites. Upon incubation of fully activated Rubisco with 5 micromolar XuBP, loss of activator CO2 occurred before XuBP bound to the enzyme catalytic sites, even in the presence of excess CO2 and Mg2+. Binding of XuBP to decarbamylated Rubisco sites was highly pH dependent. At pH 7.0 and 7.5 with 10 millimolar MgCl2 and 10 millimolar KHCO3, the apparent dissociation constant for XuBP, Kd, was 0.03 micromolar, whereas at pH 8.0 and 8.5, the apparent Kd was 0.35 and 2.0 micromolar, respectively. This increase in Kd with pH was a result of a decrease in the association rate constant and an increase in the dissociation rate constant of XuBP bound to decarbamylated sites on Rubisco. The Kd of 2-carboxyarabinitol 1-phosphate binding to carbamylated sites was only slightly pH dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号