首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Fang  Z X Zhang 《Cryobiology》1992,29(2):267-273
Embryonic cerebral tissues (ECT) either fresh or frozen-stored, were cultured and transplanted into the cerebella of neonatal host rats. Many variables including composition of the freezing medium, freezing and thawing rates, and storage time in liquid nitrogen were studied systematically. The results indicated that the following conditions yielded good results for tissue culture: using 1 M Me2SO as the cryoprotectant, freezing the brain tissues at a rate of 1 degrees C/min until it reached -70 degrees C, storing the frozen samples in liquid nitrogen and thawing them fast in a 37 degrees C water bath. The viability of the frozen-thawed tissues was assessed by their abilities to grow and differentiate in vitro and in vivo after intracerebral grafting. In tissue culture, growth and differentiation were similar to those of the fresh ECT. Cell morphology and staining reactions were normal in supravital methylene blue staining, cresyl violet staining, and acetylcholinesterase staining. Neurons had well-developed Nissl bodies, and cholinergic neurons also differentiated. Autoradiographic studies showed that more than 50% of the neurons had the ability to uptake gamma-aminobutyric acid with high affinity. In brain tissue transplantation, 9 of 12 transplants survived subsequent grafting after cryopreservation. Moreover, the grafts of surviving cryopreserved tissue displayed cytological and cytoarchitectural characteristics identical to those of fresh grafts. All grafts were integrated with the surrounding host neural tissue. This suggested that there may be synaptic connections between the transplants and the host brain tissues. From this and similar studies on the subject by others wer conclude that cryopreservation is a feasible method for storage of embryonic brain tissue to be used later for intracerebral grafting.  相似文献   

2.
Dental follicle tissue is a promising resource of mesenchymal stem cells for cytotherapeutic approaches and tissue engineering applications. There are two procedures for banking of human dental follicle stem cells have been reported. Conventional method requires cell isolation, expansion and immediate cryopreservation. Whereas dental follicle stem cells can be isolated from cryopreserved dental follicle fragments. The aim of this study was to compare the characteristics of dental follicle cells isolated from cryopreserved fragments (DFCs-CF) with dental follicle cells recovered from cryopreserved cells (DFCs-CC). Dental follicle fragments obtained after mechanical disaggregation were divided into two parts, with one part maintained in culture, while another part underwent cryopreservation. Dental follicle fragments and dental follicle cells from fresh tissue were stored in liquid nitrogen for 3 months. After thawing, the isolation, morphology, proliferation, cell cycle, colony-forming-unit ability, stemness-related marker expression, apoptosis, and multi-lineage differentiation potential of DFCs-CF were tested compared with DFCs-CC. DFCs-CF expressed mesenchymal stem cells marker, proliferated well, showed similar levels of mRNA for stemness- and apoptosis-related genes and exhibited the capacity of multi-lineage differentiation similar to those of DFCs-CC. These results imply that cryopreservation of dental follicle fragments is an effective banking method for isolation of dental follicle cells.  相似文献   

3.
Cryopreservation of testicular tissue before cancer therapy for fertility preservation in prepubertal boys with cancer is of great interest in reproductive medicine. Isolation of spermatogonial stem cells (SSCs) from cryopreserved tissues would be a suitable cell source to re-establish spermatogenesis after cancer therapy. We herein establish optimized protocols for cryopreservation of human testicular tissue and isolation of SSCs from cryopreserved tissue. We developed a freezing protocol that provided high testicular cell viability and supported structural integrity and tubular epithelium coherence similar to fresh tissue. Then, we established a protocol that allowed efficient isolation of functional SSCs from cryopreserved tissues. Isolated cells were found on the testicular basement membrane after xenotransplantation. Our results demonstrated the preservation of testicular tissue structure and high cell viability with efficient isolation of SSCs after testicular cryopreservation, which is promising for future therapeutic applications in fertility preservation.  相似文献   

4.
Summary A method is described for the preservation and subsequent recovery of hepatocytes obtained by collagenase perfusion of cynomolgus monkey (Macaca, fascicularis) livers. The fresh cells are suspended in fetal bovine serum containing 10% dimethylsulfoxide and, using a microprocessor-controlled, liquid nitrogen freezing chamber and a specific cooling protocol, processed in such a way that they can be stored in liquid nitrogen for several months and still restored to active culture. When the cryopreserved cells were established in culture they were found to actively synthesize and secrete both albumin and apolipoprotein A-I. That, taken together with morphologic evidence, was viewed as indication that the cells recovered in culture were in fact hepatocytes and not some other cell type from the monkey liver. The availability of this procedure for storing hepatocytes should contribute significantly to the efficient use of nonhuman primates as models with which to study hepatic metabolism.  相似文献   

5.
6.
The cryopreservation of exfoliated deciduous teeth and harvesting of stem cells from them as required would reduce the costs and efforts associated with banking stem cells from primary teeth. The aim of this study was determine whether the viability of pulp stromal cells from deciduous teeth was influenced by the cryopreservation process itself or the period of cryopreservation. In total, 126 deciduous teeth were divided into three groups: (1) fresh, (2) cryopreserved for <3 months (cryo<3), and (3) cryopreserved for 3–9 months (cryo3–9). The viability of the pulp tissues was compared among the three groups by evaluating the outgrowth from pulp tissues and cell activity within those pulp tissues. In addition, the terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick end labeling (TUNEL) assay was performed to compare cell apoptosis within fresh pulp tissue and pulp tissue that had been cryopreserved for 4 months. The outgrowth from and cell activity within the pulp tissues did not differ significantly between the fresh and cryo<3 pulp tissues. However, these parameters were significantly reduced in the cryo3–9 pulp tissue. In TUNEL assay, 4-month cryopreserved pulp tissues has more apoptotic cells than fresh group. In conclusion, it is possible to acquire pulp stromal cells from cryopreserved deciduous teeth. However, as the period of cryopreservation becomes longer, it is difficult to get pulp cells due to reduced cell viability.  相似文献   

7.
The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation—6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.  相似文献   

8.
Choi J  Lee B  Lee E  Yoon BK  Bae D  Choi D 《Cryobiology》2008,56(1):36-42
Cryopreservation of ovarian tissue has been reported to delay the development of preantral follicles during in vitro culture, but the mechanism causing this impairment has not been brought to light. In order to elucidate the underlying mechanism of delayed follicular development, we evaluated the effects of cryopreservation on the proliferation of granulosa cells during culture of mouse preantral follicles, as a sufficient population of granulosa cells is critical for normal follicular development. Additionally the initial cell death of granulosa cells was estimated immediately after cryopreservation. The ovarian tissues obtained from 12-day-old female mice were cryopreservation by vitrification. The granulosa cell proliferation was evaluated by measuring the PCNA expression and the expression of cell cycle regulators such as cyclin D2, CDK4, cyclin E and CDK2 in preantral follicles isolated from fresh and cryopreserved ovarian tissues that were cultured for 48 h. The viability of granulosa cells was evaluated by measuring the proportion of necrotic areas. The granulosa cell proliferation of the cryopreserved preantral follicles was decreased significantly compared to that of the fresh controls at 0 and 24 h after culture (P < 0.05), and this was increased to the control levels after 48 h of culture. The expressions of cyclin D2, Cdk 4, cyclin E and Cdk2 were also decreased in the cryopreserved ovarian tissues at 0 and 24 h after culture (P < 0.05), but they were increased to the control levels after 48 h of culture. The proportion of the necrotic area was significantly higher in cryopreserved preantral follicles compared to that of the fresh preantral follicles (P < 0.05). This suggests that cryopreservation of ovarian tissues may delay the preantral follicle development by temporary suppressing the granulosa cell proliferation through the cell cycle regulators (cyclin D2, Cdk4, cyclin E and Cdk2) and by granulosa cell death immediately after warming.  相似文献   

9.
This study was aimed to establish whether the cryopreservation procedure we currently use in clinics can modify arterial homograft antigenicity. To this purpose, we performed an immunohistochemical study on fresh and cryopreserved human arterial homografts to visualize the expression of HLA class I heavy and light chains "in situ" by using the HC-10 and Namb-1 monoclonal antibodies. Human femoral arteries and thoracic aortas were harvested from 18 heart-beating donors and sampled before and after cryopreservation. Arterial segments were frozen in liquid nitrogen vapors in a controlled rate freezing system. After thawing, samples were processed for routine immunohistochemistry. To standardize immunostaining, flow-cytometry indirect immunofluorescence analysis was performed on HUVEC; immunohistochemistry of human ovarian cortical vessels was performed as an additional positive control. Negative controls were performed by omitting tissue incubation with primary antibodies. HLA-class I antigens were markedly expressed by endothelial cells lining surface intima and adventitial vasa vasorum; a moderate expression was found in medial smooth muscle cells. Except for the surface unreactivity caused by loss of endothelium, results from cryopreserved arterial allografts were strictly comparable to those observed in fresh, unfrozen tissues. These results support the view that cryopreserved arterial allografts are immunogenic as their fresh counterparts; apart from smooth muscle cells which retained a moderate expression of HLA class I antigens following cryopreservation, our study suggests that the highly HC-10 positive endothelial cells we found to line the rich adventitial network of vasa vasorum are expected to be one of the major targets of the serological response in the recipient.  相似文献   

10.
Peripheral blood mononuclear cells (PBMC) have been accepted as a unique material for cancer immunotherapy using dendritic cells (DC) or activated lymphocytes that are being developed as an alternative or adjuvant to conventional therapies such as surgery, chemotherapy and radiation treatment. Although successful cryopreservation of large numbers of PBMC is critical for the immunotherapy, subsequent functional study of the effects of PBMC cryopreservation on differentiation into immune cells has not been well defined. In this study, over 1.0 × 108 cells/ml PBMC were cryopreserved as long as 52 weeks using a controlled-rate freezer (CRF) and stored in a vapor phase of liquid nitrogen tank. The effect of PBMC cryopreservation on differentiation into DC was studied by comparing the phenotypic and functional properties of immature DC (iDC) and mature DC (mDC) derived from cryopreserved PBMC to those from fresh PBMC. The results show that cryopreservation of PBMC at a fairly high cell concentration does not significantly affect cell recovery, viability, or phenotypes of PBMC. After differentiation into DC, iDC and mDC derived from cryopreserved PBMC had their typical phenotypes and function equivalent to those derived from fresh PBMC. Therefore, the improved cryopreservation process of PBMC described in this study is available for DC-based cancer immunotherapy.  相似文献   

11.
Two different cryogenic methods were used to study the preservation of murine bone marrow cells. Compared to the classical methods, in which separated mononuclear marrow cells in 10% dimethyl sulfoxide (DMSO) were cryopreserved in liquid nitrogen (-196 degrees C), a modified technique was carried out by cryopreservation of unfractionated marrow cells in a mixed protectant of 5% DMSO and 6% hydroxyethyl starch (HES) at -80 degrees C. Samples that were separately thawed after storage for 1, 4, 8, and 12 weeks were assayed for cell viability and recovery of CFU-GM and CFU-S. No macroscopic clumping of cells was noted either in fractionated or in unfractionated marrow cell cryopreservations. A mild damage, about 25% reduction of stem cells, was found at 1 week and did not deepen further. It seems that the greatest loss of stem cells occurred in the process of cryopreservation itself. Compared to prefreeze values, both a high number of cells that excluded trypan blue (87 +/- 3.4%) and a high recovery of CFU-GM (75 +/- 9.8%) and CFU-S (74 +/- 11.2) were observed in unfractionated marrow samples cryopreserved with the DMSO/HES mixture at -80 degrees C for 3 months and these results were very similar to those obtained from fractionated mononuclear marrow cells cryopreserved at -196 degrees C. The DMSO/HES protectant provides a simplified bone marrow cryopreservation technique that should be favorable to clinical application because of its high stem cell recovery and avoidance of cell-separation manipulation.  相似文献   

12.
BACKGROUND: Autologous transplantation is an attractive approach to treat some neurological diseases. A major obstacle is the capacity to produce cells for transplantation at the appropriate time. We describe a cryopreservation procedure for adult human brain tissue allowing the generation of cells in vitro. METHODS: Neurological resections were dissected to separate white and grey matter. Fractions were frozen in a specific cryopreservation medium containing a selected serum and stored in liquid nitrogen. Tissue was thawed, cells were mechanically dissociated, expanded in culture and characterized by immunochemistry. RESULTS: Adult human brain tissue cryopreserved for up to two years was successfully used to generate brain cells that could be maintained in culture for up to 100 days. Cells expressed a variety of neuroectodermal markers including GFAP, S100beta, and neurofilament. CONCLUSION: A successful procedure for cryopreservation of adult human brain tissue has been established that might facilitate future autologous transplantation strategies.  相似文献   

13.
Summary Recently, it was demonstrated that the application of slow-cooling cryopreservation protocols to adherent human embryonic stem (hES) cell colonies, cultured on matrigel or murine embryonic fibroblast feeder layers, resulted in marked improvement in postthaw viability and reduction in cell differentiation. However, the use of commercially available culture plates for this purpose presents several limitations. Most obviously, these plates are not designed for cryopreservation or to withstand the low temperatures encountered during liquid nitrogen cryopreservation, or both. The physical storage of cryopreserved plates is another consideration, in addition to difficulty in maintaining sterile conditions in liquid nitrogen storage and during the thaw phase in a water bath. Hence, a redesign of the cell culture plate for the cryopreservation of adherent hES cell colonies is proposed. In this model, a culture plate made of synthetic materials resistant to storage at −196° C of liquid nitrogen is designed, with readily attachable screw-cap culture wells that function as a replacement for cryovial storage. The detachable wells facilitate storage and after thawing can easily be reattached to a specially designed holding plate. Currently, there are no commercially available cell culture plates using this design concept. The proposed design is envisioned to facilitate the cryopreservation of intact adherent hES cell colonies that could assist the development of automated systems for handling bulk quantities of cells.  相似文献   

14.
The aim of this study was to determine the optimal conditions (effect of culture time before and after cryopreservation) for cryopreservation of specific pathogen-free pig islet cells. METHODS: (1) Glucose-induced insulin secretion by fresh islet cells cultured for 10 days was compared to that by islet cells cryopreserved 7 days after isolation and cultured 3 days after thawing. (2) Islet cells were cryopreserved 1, 7, or 14 days after isolation and cultured 3, 7, 14, or 21 days after thawing. Islet cell number, insulin content, and insulin response under perifusion tests were investigated. RESULTS: (1) Insulin response by cryopreserved islet cells was identical to that by fresh islet cells (basal/stimulation index: 2. 13 +/- 0.19 vs 2.17 +/- 0.16, n = 4, NS), although the amount of secreted insulin was reduced by 40% (area under the curve: 2136 +/- 198 pM/10(4) cells/180 min vs 3564 +/- 636 pM/10(4) cells/180 min, P = 0.104). (2) Cell number 6 days after thawing was reduced by 54, 40, and 63% when cryopreservations were carried out at D1, D7, and D14. (3) Insulin content in cultured or cryopreserved islet cells increased between 7 and 14 days of culture. (4) Whatever the culture time before and after cryopreservation, insulin secretion in response to glucose was maintained. The insulin release was the highest for islet cells cryopreserved 14 days after isolation and cultured 14 days after thawing (stimulation index: 6.19 +/- 2.68). CONCLUSIONS: SPF pig islet cells remained functional after cryopreservation in polyethylene glycol and it may be important to culture islet cells over 14 days before and after cryopreservation.  相似文献   

15.
Cryopreservation is the only long-term storage option for the storage of vessels and vascular constructs. However, endothelial barrier function is almost completely lost after cryopreservation in most established cryopreservation solutions. We here aimed to improve endothelial function after cryopreservation using the 2D-model of porcine aortic endothelial cell monolayers.?The monolayers were cryopreserved in cell culture medium or cold storage solutions based on the 4°C vascular preservation solution TiProtec®, all supplemented with 10% DMSO, using different temperature gradients. After short-term storage at ?80°C, monolayers were rapidly thawed and re-cultured in cell culture medium.?Thawing after cryopreservation in cell culture medium caused both immediate and delayed cell death, resulting in 11 ± 5% living cells after 24 h of re-culture. After cryopreservation in TiProtec and chloride-poor modifications thereof, the proportion of adherent viable cells was markedly increased compared to cryopreservation in cell culture medium (TiProtec: 38 ± 11%, modified TiProtec solutions ≥ 50%). Using these solutions, cells cryopreserved in a sub-confluent state were able to proliferate during re-culture. Mitochondrial fragmentation was observed in all solutions, but was partially reversible after cryopreservation in TiProtec and almost completely reversible in modified solutions within 3 h of re-culture. The superior protection of TiProtec and its modifications was apparent at all temperature gradients; however, best results were achieved with a cooling rate of ?1°C/min.?In conclusion, the use of TiProtec or modifications thereof as base solution for cryopreservation greatly improved cryopreservation results for endothelial monolayers in terms of survival and of monolayer and mitochondrial integrity.  相似文献   

16.
The cryopreservation protocol we use for arterial reconstructive surgery has been studied to evaluate smooth muscle cell (SMC) structural integrity and viability before implantation. Samples of human thoracic aortas (HTA) were harvested from five multi-organ donors. Sampling included unfrozen and cryopreserved specimens. Cryopreservation was performed using RPMI with human albumin and 10% Me(2)SO in a controlled-rate freezing apparatus. Thawing was accomplished by submerging bags in a water bath (39 degrees C) followed by washings in cooled saline. In situ cell preservation as investigated by light and transmission electron microscopy showed that SMCs from cryopreserved HTA had nuclear and cytoplasmic changes. A TUNEL assay, performed to detect DNA fragmentation in situ, showed increased SMC nuclear positivity in cryopreserved HTA when compared to unfrozen samples. 7-AAD flow cytometry assay of cells derived from cryopreserved HTA showed that an average of 49+/-16% cells were unlabeled after cryopreservation. Organ cultures aimed to study cell ability to recover cryopreservation damage showed a decreasing number of SMCs from day 4 to day 15 in cryopreserved HTA. In conclusion, the cryopreservation protocol applied in this study induces irreversible damage of a significant fraction of arterial SMCs.  相似文献   

17.
The cryopreservation of hen and rat brain spheroids was investigated. Brain spheroid cultures were prepared from 7-day-old hen embryos or 16-day-old rat embryos, by using a rotation-mediated culture system. The spheroids were cryopreserved in medium containing 5-15% dimethyl sulphoxide (DMSO) and stored in liquid nitrogen, by using a two-stage cooling procedure. The results show that the viability, as indicated by the total protein content of hen embryo brain spheroids at 24 hours, and at 3, 7 and 28 days after thawing, ranged from 45.5% to 64.2% of control values. It took 3 days for the post-thaw brain spheroids to stabilise, as indicated by their morphology and selected neural markers of functionality. These functions were maintained over a 28-day observation period. Spheroids cultured for 12-15 days in vitro before cryopreservation survived better than those that were cryopreserved after 5-7 days in vitro. The viability and biochemical functionality of spheroids after long-term (up to 6 months) storage were similar to those following short-term storage. The viability of rat brain spheroids cryopreserved in 15% DMSO, as indicated by total protein content, at 24 hours, and at 3 or 7 days after thawing, ranged from 23.1% to 32.1% of control values. This study shows for the first time that brain spheroids prepared from primary tissue can be successfully cryopreserved.  相似文献   

18.
Cryopreservation preserves cells at low temperature and creates a reserve for future use while executing the clinical translation. Unlike articular chondrocyte, cryopreservation protocol and its outcome are not described in iliac apophyseal chondrocytes, a potential source of chondrocytes in cartilage engineering. This study for the first time describes the cryopreservation of human iliac apophyseal chondrocytes. Four cartilage samples were procured from iliac crests of children undergoing hip surgery after consent. The total chondrocyte yield was divided into two groups. First group was grown as monolayer while second group was cryopreserved following the slow cooling method in the medium containing 10 % Dimethyl sulfoxide for 3 months. Group two cells were also grown as a monolayer following thawing. Viability, time to confluence, population doubling time and phenotype maintenance were compared for both the groups. Viability was 65.75 % after 3 months of cryopreservation at ?196 °C, as compared to 94.19 % for fresh chondrocytes (p = 0.001). Fresh and cryopreserved cells reached confluence on 10th and 15th day of culture respectively. Population doubling time was significantly more in fresh than cryopreserved chondrocytes on 10th (p = 0.0006) and 15th day (p = 0.0002) in culture. Both fresh and cryopreserved cells maintain their chondrocyte phenotype as assessed by immunocytochemistry. Relative gene expression by real time polymerase chain reaction showed similar upregulation of mRNA of Collagen 2, SOX 9, Aggrecan and Collagen 1 in cryopreserved chondrocyte as compared to fresh chondrocyte. Iliac apophyseal chondrocytes cryopreserved for 3 months maintained the phenotype successfully 2 weeks after thawing in culture. The viability and proliferation rates after thawing were adequate for a clinical translation of these cells.  相似文献   

19.
It was shown in culture in vitro that neurons isolated from the cryopreserved brain of adult molluscs Lymnaea stagnalis L. retain viability. Isolated brains were frozen in liquid nitrogen vapors at a rate of 400-500 degrees C/min in the presence of 2 M dimethylsulfoxide. The samples were then plunged into liquid nitrogen and stored from 1 month to 2 years. Upon thawing and removing the cryoprotectant, the neurons were isolated from the brain and then introduced into a cellular culture in vitro. It was shown that the thawed neurons were capable of regenerating new nerve processes similar to those formed by unfrozen neurons in the control.  相似文献   

20.
Basidiomycetes present specific problems with regard to their preservation, because most of them do not form resistant propagules in culture but exist only as mycelium. Usually these fungi can only be preserved by serial transfer on agar (labour-intensive procedures that can increase the danger of variation or loss of physiological or morphological features), or cryopreserved in liquid nitrogen (expensive). Cryopreservation at −80 °C and lyophilisation could be good alternatives.In this work we set up and tested six protocols of cryopreservation at −80 °C, and 12 protocols of lyophilisation on 15 isolates of white-rot fungi (WRF) belonging to 10 species. The tested protocols were mainly characterized by the use of different growth media, protectants, time and number of perfusion with protectants and finally by the typology and origin of the samples to be cryopreserved (mycelium/agar plug, whole colony) or to lyophilise (mycelium/agar plug, mycelium fragment, whole colony). Cryopreservation and lyophilisation outcomes were checked, at morphological (macro- and microscopic features), physiological (growth rate and laccase, Mn-independent and Mn-dependent peroxidases activities) and genetic level (Amplified Fragment Length Polymorphisms analysis - AFLP). Vitality of all fungi was successfully preserved by all cryopreservation protocols at −80 °C, and by two lyophilisation methods. Our results showed that cryopreservation at −80 °C did not produce morphological changes in any isolate, while two isolates were affected by lyophilisation. None of the physiological features were lost, even though growth rate and enzyme activities were somehow influenced by all preservation methods. AFLP analysis showed that only the two isolates that varied in their morphology after lyophilisation produced a different DNA fingerprint pattern in comparison with that obtained before lyophilisation. These findings provide evidence that cryopreservation at −80 °C and lyophilisation are suitable alternatives to liquid nitrogen cryopreservation for preservation of some WRF strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号