首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Palatal taste buds of perihatching chicks were examined by electron microscopy. Four intragemmal cell types were characterized. 1) Light: with voluminous, electron-lucent cytoplasm containing scattered free ribosomes, rough and smooth endoplasmic reticulum, plump mitochondria, sparse perinuclear filaments, occasional Golgi bodies, and numerous clear and dense-cored vesicles. Clear vesicles sometimes aggregate in a presynaptic-like configuration apposed to an axonal profile. These cells contained large, spherical, uniformly granular nuclei with one nucleolus. 2) Dark: with dense cytoplasm containing filamentous bundles surrounding the nucleus, occasional clear vesicles, centrioles, rough endoplasmic reticulum, and compact mitochrondria. The apical cytoplasm noticeably lacks dense secretory granules. Irregular to lobulated nuclei are densely granular, and contain scattered clumps of chromatin, adhering especially to the inner leaflet of the nuclear membrane, and at least one nucleolus. Cytoplasmic extensions of dark cells envelop other intragemmal cell types and nerve fibers. Light and dark cells project microvilli into the taste pore. 3) Intermediate: contain gradations of features of light and dark cells. 4) Basal: darker than the other intragemmal cell types and confined to the ventral bud region. Putative afferent synapses in relation to light cells, and axo-axonal contacts are described. While the appearance of axo-axonal contacts may be a transient developmental event, other bud features are consonant with observations in adult chickens and suggest that the peripheral gustatory apparatus is mature at hatching in this precocial avian species.  相似文献   

3.
We studied structural changes in spinal ganglion neurons that occur in lizards exposed to the cold, both at the light and electron microscope levels. Two types of perikaryal changes were found in the cold-exposed animals: (a) In 25% of all ganglion neurons, the central region of the perikaryon was devoid of Nissl bodies and a narrow peripheral zone stained deeply basophilic. Electron microscopic examination of these cells showed that mitochondria, Golgi complexes and other organelles were assembled in the central region of the perikaryon, while most cisternae of granular endoplasmic reticulum and free polysomes were confined to the periphery of the perikaryon. These changes seem to take place mainly in dark neurons. (b) In 8.6% of all ganglion neurons, Nissl bodies were present throughout the perikaryon, but separated by large, clear spaces. Under the electron microscope, these clear spaces were filled with large numbers of densely packed filaments. It seems that mainly light neurons undergo this type of structural change. The degree of nuclear eccentricity was significantly greater in the neurons of cold-exposed animals than in controls. The nucleolar volume was significantly increased and both the percentages of nuclei with two nucleoli and of nuclei with 'vacuolated' nucleoli were significantly greater in neurons displaying structural changes than in the other neurons. The structural modifications observed in spinal ganglion neurons of cold-exposed lizards closely resemble those seen in the same lizard neurons following axonal section. They could be due to a) metabolic changes induced by low temperature and fasting, b) alterations in the flow of nerve impulses from the periphery, or c) impaired retrograde transport of trophic substances from the periphery to the cell body.  相似文献   

4.
Summary An investigation was made of the gross arrangement of the thoracic sympathetic rami, the histology and fine structure of their neurons, and of the light microscopy of thoracic spinal nerve roots in the rat. Sympathetic neurons were multipolar and were placed singly or in groups in the scanty stroma of collagen or among bundles of fine nerve fibers. Myelinated fibers in thoracic rami communicantes were either absent or occurred only in small numbers. Hence no white rami could be identified and thoracic preganglionic sympathetic fibers must have been unmyelinated. The few myelinated fibers in the sympathetic rami were probably somatic. Most sympathetic neurons were mononucleate and had a dense mottled nucleolus; a few binucleate neurons were observed. The nuclear envelope was always surrounded by a light perinuclear zone. The Nissl substance was usually arranged in distinct bodies which consisted of parallel, well-separated, and in some instances of closely packed layers of rough-surfaced cisternae; their membranes were occasionally fused. The sizes, shapes, texture, distribution and significance of dense bodies in the sympathetic perikaryon were described. A few whorls, onion or myelin-like structures were conjectured to be submicroscopic scars localizing presumptive minute areas of autolysis or necrosis. The satellite cell provided a fairly smooth and narrow coat around the sympathetic perikaryon, except where it contained the crenated nucleus or aggregates of cytoplasmic components. Axons and dendrites could not be classified according to the presence or absence of Nissl substance. Synaptic nerve endings, rarely placed as axo-somatic junctions at the sympathetic perikaryon, were usually observed at the neuronal processes, but their identification as axo-axonic or axo-dendritic endings could not be made. A comparison was made of the fine structure of sympathetic neurons in the rat, frog and man.This investigation was supported (in whole) by United States Public Health Service Grant NB-01879-07, Institute for Nervous Diseases and Blindness.  相似文献   

5.
1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mmicro in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.  相似文献   

6.
THE FINE STRUCTURE OF NEURONS   总被引:6,自引:4,他引:2       下载免费PDF全文
1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mµ in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.  相似文献   

7.
Degenerative and regenerative processes occur in the preoptic neurons following transection of the preoptico-neurohypophysial tract. Three types of responses after transection were observed: affected, recovered, and degenerated neurons. However, transection of the tract did not stop the synthesis of neurosecretory granulated vesicles. The affected neurosecretory neurons showed nuclear changes, increased number of Golgi complexes, and dilated cisternae of rER, as well as, an increased number of dense bodies. The recovered neurosecretory neurons contained long non-dilated cisternae of rER which were organized in a concentric manner. Also seen were large nuclei with evenly distributed chromatin, less active Golgi complexes, and vesicles. The degenerated neurosecretory neurons exhibit pyknotic nuclei, a net of dilated cisternae of rER, dense bodies, and electron dense cytoplasm.  相似文献   

8.
Summary Structures identified as annulate lamellae, lamellar bodies and subsurface cisternae were found in neurons of the hyperstriatum accessorium of the avian forebrain. Annulate lamellar arrays with up to six lamellae were present in the larger somata. The lamellae were made up of fused smooth-surfaced cisternae forming pores or annuli and were surrounded by a dense filamentous to granular material. Stacks of nonfenestrated, parallel, regularly spaced cisternae, designated as lamellar bodies, also appeared in the cytoplasm. When flattened they were reminiscent of the electron dense subsurface cisternae. Continuity could be demonstrated between peripherally located subsurface cisternae and lamellar bodies. The dense filamentous to finely granular substance was also located between these structures. Annulate lamellae, lamellar bodies and subsurface cisternae were always observed in conjunction with the rough endoplasmic reticulum. The functional significance of these structural associations is considered.  相似文献   

9.
Living chick spinal ganglion neurons grown for 19 to 25 days in vitro were photographed with a color-translating ultraviolet microscope (UV-91) at 265, 287, and 310 mmicro. This instrument was unique in permitting rapid accumulation of ultraviolet information with minimal damage to the cell. In the photographs taken at 265 mmicro of the living neurons, discrete ultraviolet-absorbing cytoplasmic masses were observed which were found to be virtually unchanged in appearance after formalin fixation. These were identical with the Nissl bodies of the same cells seen after staining with basic dyes. The correlation of ultraviolet absorption, ribonuclease extraction, and staining experiments with acid and basic dyes confirmed the ribonucleoprotein nature of these Nissl bodies in the living and fixed cells. No change in distribution or concentration of ultraviolet-absorbing substance was observed in the first 12 ultraviolet photographs of a neuron, and it is concluded that the cells had not been subjected to significant ultraviolet damage during the period of photography. On the basis of these observations, as well as previous findings with phase contrast microscopy, it is concluded that Nissl bodies preexist in the living neuron as discrete aggregates containing high concentrations of nucleoprotein.  相似文献   

10.
Sympathetic ganglia of the horned lizard, Phrynosoma cornutum, were fixed in OsO(4) and imbedded in methacrylate. Thin sections were cut for electron microscopy. Some adjacent thick sections were cut for light microscopy and were stained in acidified, dilute thionine both before and after digestion by RNase. In the light microscope two types of Nissl bodies are found, both removable by RNase: (1) a deep, diffuse, indistinctly bounded, metachromatic variety, and (2) a superficial, dense, sharply delimited, orthochromatic sort. Electron microscopically, the former ("reticular" Nissl bodies) corresponds to the granulated endoplasmic reticular structure of Nissl material previously described by others, whereas the latter ("areticular" Nissl bodies) comprises compact masses of particles of varying internal density and devoid of elements of endoplasmic reticulum. The constituent particles of the areticular Nissl material are 4 to 8 x the diameter of single ribonucleoprotein granules of the reticular Nissl substance and seem, near zones of junction with the reticular type, to arise by clustering of such granules with subsequent partial dispersion of the substance of the granules into an added, less dense material. It is suggested that the observed orthochromasia of the areticular Nissl substance is due to accumulation of a large amount of protein bound to RNA and, further, that these Nissl bodies may represent storage depots of RNA and protein.  相似文献   

11.
Spinal ganglionic cells of Rana pipiens were studied with light and electron microscopes in normal animals and in animals which had received graded dosages of malononitrile intraperitoneally. After treatment no increase in the intensity of staining was noted in the Nissl substance when spinal ganglion cells were examined with the light microscope. The electron micrographs demonstrated the following in malononitrile-treated animals: 1. The cisternae of the endoplasmic reticulum composing the Nissl bodies appeared to fragment and lose their parallel orientation. 2. The microvesicular components of the Golgi complex appeared to increase in number, and the increase was apparently due to fragmentation of the membrane system of the Golgi complex. 3. The mitochondria enlarged and became pleomorphic, but displayed no alterations of internal structure. The morphological changes may be interpreted as reflections of biochemical alterations.  相似文献   

12.
Long-term organotypic cultures of rat dorsal root ganglia were exposed to a single 40 kR dose of 184 kvp X-rays and studied in the living and fixed states by light or electron microscopy at 1–14 day intervals thereafter. Within the first 4 days following irradiation, over 30% of the neurons display chromatolytic reactions (eccentric nuclei, peripheral dispersal of Nissl substance, central granular zone) as well as abnormal nucleolar changes and dissociation of ribosomes from endoplasmic reticulum cisternae. Some satellite cells undergo retraction or acute degeneration, leaving only basement membrane to cover the neuron in these areas. 8 days after irradiation, neurons also exhibit (a) areas in which ribosomes are substantially reduced, (b) regions of cytoplasmic sequestration, (c) extensive vacuolization of granular endoplasmic reticulum and Golgi complex, and (d) diversely altered mitochondria (including the presence of ribosome-like particles or association with abnormal glycogen and lipid deposits). Nucleolar components become altered or reoriented and may form abnormal projections and ringlike configurations. Sizeable areas of the neuronal soma are now denuded of satellite cells; underlying these areas, nerve processes are found abnormally invaginated into the neuronal cytoplasm. By the 14th day following irradiation, most neurons display marked degenerative changes including extensive regions of ribosome depletion, sequestration, vacuolization, autolysis, and, in some areas, swirls of filaments, myelin figures, and heterogeneous dense bodies. These observations demonstrate that X-irradiation produces profound cytopathological changes in nervous tissue isolated from the host and that many of these changes resemble the effects of radiation on nervous tissue in vivo.  相似文献   

13.
Living chick spinal ganglion neurons grown for 19 to 25 days in vitro were photographed with a color-translating ultraviolet microscope (UV-91) at 265, 287, and 310 mµ. This instrument was unique in permitting rapid accumulation of ultraviolet information with minimal damage to the cell. In the photographs taken at 265 mµ of the living neurons, discrete ultraviolet-absorbing cytoplasmic masses were observed which were found to be virtually unchanged in appearance after formalin fixation. These were identical with the Nissl bodies of the same cells seen after staining with basic dyes. The correlation of ultraviolet absorption, ribonuclease extraction, and staining experiments with acid and basic dyes confirmed the ribonucleoprotein nature of these Nissl bodies in the living and fixed cells. No change in distribution or concentration of ultraviolet-absorbing substance was observed in the first 12 ultraviolet photographs of a neuron, and it is concluded that the cells had not been subjected to significant ultraviolet damage during the period of photography. On the basis of these observations, as well as previous findings with phase contrast microscopy, it is concluded that Nissl bodies preexist in the living neuron as discrete aggregates containing high concentrations of nucleoprotein.  相似文献   

14.
Summary Neurons in cultures of central nervous tissue exhibited marked structural changes when exposed to hypertonic solutions. Cellular reactions were described in living neurons as well as after fixation and staining in preparations observed with both the light and electron microscope. The structures involved in these changes were mainly the nucleolus, the nucleus and the Nissl substance.Nucleolus In living neurons, observed with phase contrast optics, the nucleolus became invisible in hypertonic medium. This change occurred within a few seconds, and it was reversible when the cells were brought back to isotonic solutions. Fixation of the cells while exposed to hypertonic solution caused the nucleolus to reappear as a granular body. In stained preparations it appeared as a more irregular body in contrast to the smoothly outlined nucleolus in normal cells. In electron microscopic preparations of neurons which were fixed while exposed to hypertonic solutions the nucleolus was visible only as nucleolar shadow, overlaid by a few small irregular bodies of higher electron density than other nuclear contents.Nucleus The nuclear membrane of living neurons exposed to hypertonic media lost much of its sharp definition and became rather hazy in outline. The nuclear diameter increased about 10% in hypertonic medium, and the nuclear space became somewhat denser when observed with the phase contrast microscope. In Nissl stained preparations the nuclear space was filled with many small granular or rod-shaped bodies in contrast to the clear vesicular appearance of the nuclei of untreated cells. In electron microscopic preparations the nuclear space exhibited a spotty appearance due to the presence of electron dense and light areas.Nissl Substance In living neurons immersed in hypertonic solutions the Nissl substance showed a slight increase in phase density, especially after repeated changes between hypertonic and isotonic solutions. Sometimes a distinct striation in the Nissl substance appeared. In Nissl stained preparations there was no marked change observed in comparison with normal cells. However, in the electron microscope, the Nissl substance of hypertonically treated cells exhibited a marked structural change. The membrane-bound spaces of the endoplasmic reticulum assumed a rather precise orientation parallel to the cell membrane so that in extreme cases a concentric arrangement of endoplasmic cisternae was observed. The normal arrangement of ribosomal granules in rosettes and clusters became disturbed and the granules were more uniformly distributed.The cells as whole units showed a distinct shrinkage in hypertonic solution which may account for the more crowded appearance of various organelles such as mitochondria and Golgi complexes. There was also a marked increase in agranular reticulum profiles and small membrane bound vesicles in treated cells. Vacuoles appeared frequently in the cytoplasm of treated cells; they disappeared upon re-immersion in isotonic medium.This investigation was supported by USPHS Grants NB 03114-04, NB 00690-11 and 5 T 1 GM 495 from the National Institutes of Health, Bethesda, Maryland.Acknowledgement. Mrs. Eleanor W. Morris and Mr. Edwin E. Pitsinger, Jr. gave indispensible aid with the management of the cultures and with photographic procedures.  相似文献   

15.
Sympathetic ganglia of the horned lizard, Phrynosoma cornutum, were fixed in OsO4 and imbedded in methacrylate. Thin sections were cut for electron microscopy. Some adjacent thick sections were cut for light microscopy and were stained in acidified, dilute thionine both before and after digestion by RNase. In the light microscope two types of Nissl bodies are found, both removable by RNase: (1) a deep, diffuse, indistinctly bounded, metachromatic variety, and (2) a superficial, dense, sharply delimited, orthochromatic sort. Electron microscopically, the former ("reticular" Nissl bodies) corresponds to the granulated endoplasmic reticular structure of Nissl material previously described by others, whereas the latter ("areticular" Nissl bodies) comprises compact masses of particles of varying internal density and devoid of elements of endoplasmic reticulum. The constituent particles of the areticular Nissl material are 4 to 8 x the diameter of single ribonucleoprotein granules of the reticular Nissl substance and seem, near zones of junction with the reticular type, to arise by clustering of such granules with subsequent partial dispersion of the substance of the granules into an added, less dense material. It is suggested that the observed orthochromasia of the areticular Nissl substance is due to accumulation of a large amount of protein bound to RNA and, further, that these Nissl bodies may represent storage depots of RNA and protein.  相似文献   

16.
The neurons of the trigeminal ganglia of the rat and chicken were characterized by means of light microscopic, electron microscopic, and histochemical methods. Light microscopy disclosed four types of neurons, based on the characteristics of Nissl granules: (1) large neurons with diffusely distributed and very fine granules, (2) neurons containing coarse and sparsely distributed Nissl granules, (3) neurons containing dense Nissl granules of varying size, and (4) small neurons with granules concentrated peripherally. Electron microscopy allowed further definition of these four types of neurons by the length and arrangement of flattened cisterns of granular endoplasmic reticulum (gER) and the number of neurofilaments. Type 1 cells were largest, with a mean nuclear area of 139.8 ± 28.3 μm2. Type 4 cells were smallest, with a mean nuclear area of 74.6 ± 20.9 μm2. The mean nuclear areas of type 2 and 3 cells were intermediate to those of the type 1 and 4 cells. Type 3 and 4 neurons lacked neurofilaments. Four forms of Golgi apparatus were found: (1) large bent grains forming a network throughout the soma, (2) dispersed fine granular deposits, (3) fine or small granules, and (4) coarse bent deposits arranged confluently in the perinuclear zone. In some rat neurons, the concentration of acid phosphatase reaction products suggested a high enzymatic activity, whereas the chicken ganglion cells showed no such concentration. These findings are discussed and compared with the classifications of previous studies.  相似文献   

17.
Summary Amaranthus plants infected with a virus of rod-shaped particles showed under the light microscope intracytoplasmic amorphous and crystalline inclusions.The submicroscopic organization of mesophyll cells from infectedAmaranthus leaves by electron microscopy is described. Besides big crystalline inclusions, long dark inclusions correspondent to needle-like inclusions observed by light microscopy are definable in the cytoplasm. The amorphous inclusion bodies were formed by an overgrown protrusion of vacuolate cytoplasm containing virus particles, long very dark stained inclusions forming dense bands and rings, normal elements of the cytoplasm such as mitochondria, endoplasmic reticulum and ribosomes, and some spherosomes. Inclusions and virus particles were not found in chloroplasts, mitochondria or nuclei of infected cells.  相似文献   

18.
Electron microscopic study of the neuronal composition of Emys orbicularis cortical zones as compared with the light microscopy data has revealed that the distinctions in the cell cytoplasm ultrastructure with respect to the dendrite branching pattern and the peculiarities of their localization in the cortical plate are suggestive of a possible metabolic heterogeneity and can serve as a foundation of the morpho-functional characteristics of the neurons. A few neuronal types of neurons have been revealed: 1. light neurons distinguished by the cytoplasm matrix devoid of any electron density, a poorly developed endoplasmic reticulum and a few cytoplasmatic organells and inclusions; 2. light neurons having slight osmophility of the cytoplasm matrix, a more developed endoplasmic reticulum with elongated cisternae, a great number of organells including neurofilaments; 3. dark neurons having a high degree of cytoplasm matrix and the nucleus, a large number of the nuclei, cytoplasm, dendrites and axons in contrast to the above described patterns.  相似文献   

19.
In situ hybridization (ISH) using a 25 mer tritiated oligonucleotide probe has been performed to study at the electron microscopic level the subcellular localization of the oxytocin mRNA in the rat hypothalamic magnocellular neurons. After high resolution radioautography, silver grains appeared to be localized over the cytoplasm of some magnocellular neurons of the supra-optic nucleus and frequently overlapped the ergastoplasmic "cisternae" of the Nissl bodies. These results demonstrate the possible application of ISH at a subcellular level using high resolution radioautography and a tritiated probe.  相似文献   

20.
Living chick embryo spinal ganglion neurons grown from 1 to 4 weeks in vitro were studied under the phase contrast microscope. In the peripheral cytoplasm of the earliest stages studied, a homogeneous, phase-dense material is seen which corresponds in location to the cytoplasmic basophil material of the same stages. As maturation proceeds, this material increases in extent, and becomes separated by lighter channels into discrete bodies. Short fixation by 1 per cent buffered osmium tetroxide followed by post-fixation with neutral buffered formalin does not significantly alter the size, shape, or distribution of any of the cytoplasmic components, and the fixed, hydrated cell is almost indistinguishable from the living cell. Dehydration causes some shrinkage of the fixed preparations, but if the photographs of the stained preparations are enlarged to correspond with those of the living cell, excellent correspondence can be made between at least the larger basophil masses and the larger dark masses seen with phase contrast. Fixation by a formalin-mercuric chloride procedure also results in satisfactory correspondence between the stained Nissl bodies and the phase-dark homogeneous areas. It is concluded that discrete Nissl bodies preexist in the living neuron and are essentially unchanged after good cytological fixation. Evidence is also presented of the presence of neurofibrils in the living state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号