首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is strong evidence that multiple sclerosis (MS) is characterized not only by immune mediated inflammatory reactions but also by neurodegenerative processes. Accumulated data indicate that oxidative stress (OS) plays a major role in this process. Generated in excess, reactive oxygen species (ROS) lead to oxidative stress and are involved in demyelination and axonal damage in MS. ROS generation may be inhibited partly by hypothermia, which is known as a potent putative neuroprotectant and may inhibit generating free radicals and oxidative stress. Whole-body cryotherapy (WBCT) treatment may improve both survival and neurological outcome in MS patients.  相似文献   

2.
Downhill running causes muscle damage, and induces oxidative stress and inflammatory reaction. Recently, it is shown that curcumin possesses anti-oxidant and anti-inflammatory potentials. Interestingly, curcumin reduces inflammatory cytokine concentrations in skeletal muscle after downhill running of mice. However, it is not known whether curcumin affects oxidative stress after downhill running-induced muscle damage. Therefore, the purpose of this study was to investigate the effects of curcumin on oxidative stress following downhill running induced-muscle damage. We also investigated whether curcumin affects macrophage infiltration via chemokines such as MCP-1 and CXCL14. Male C57BL/6 mice were divided into four groups; rest, rest plus curcumin, downhill running, or downhill running plus curcumin. Downhill running mice ran at 22 m/min, −15% grade on the treadmill for 150 min. Curcumin (3 mg) was administered in oral administration immediately after downhill running. Hydrogen peroxide concentration and NADPH-oxidase mRNA expression in the downhill running mice were significantly higher than those in the rest mice, but these variables were significantly attenuated by curcumin administration in downhill running mice. In addition, mRNA expression levels of MCP-1, CXCL14 and F4/80 reflecting presence of macrophages in the downhill running mice were significantly higher than those in the rest mice. However, MCP-1 and F4/80 mRNA expression levels were significantly attenuated by curcumin administration in downhill running mice. Curcumin may attenuate oxidative stress following downhill running-induced muscle damage.  相似文献   

3.
Contusion injuries are a very common form of both athletic and non-athletic injury, that effect muscle function. Treatments to augment the normal repair and regeneration processes are important for a wide variety of patients. Therapeutic ultrasound has been claimed to promote tissue repair, especially by enhancing cell proliferation and protein synthesis. The present study aimed to investigate the effect of therapeutic pulsed ultrasound (TPU) on parameters of oxidative stress, namely thiobarbituric acid-reactive substances (TBARS), protein carbonyl content and the activities of antioxidant enzymes, catalase and superoxide dismutase (SOD), in skeletal muscle after injury. Wistar rats were submitted to an animal model of muscle (gastrocnemius) laceration. TPU was used once a day. One, three or five days after muscle laceration, the animals were killed by decapitation and oxidative stress parameters were evaluated. Serum CK levels were increased in muscle-injured animals, indicating that the laceration animal model was successful. TBARS were not altered after muscle injury, when compared to the sham group. Protein carbonyl content was increased after muscle laceration. Catalase and SOD activities were increased 1 day after muscle injury and not altered at days 3 and 5. TPU decreased TBARS levels after muscle laceration when compared to injured muscle animals without treatment. Protein carbonyl content evaluation presented similar results. It is tempting to speculate that TPU seems to protect the tissue from oxidative injury. TPU diminished catalase and SOD activities, especially on the first day following muscle laceration.  相似文献   

4.
Piceatannol (PIC), a phytochemical, is abundant in passion fruit (Passiflora edulis) seeds. In this study, we investigated the effects of PIC on the expression levels of antioxidant enzymes in C2C12 skeletal muscle cells and compared its effects with those of PIC analogues and polyphenols. We also evaluated its effects on hydrogen peroxide–induced accumulation of reactive oxygen species in C2C12 myotubes. Treatment with PIC led to dose-dependent upregulation of heme oxygenase-1 (Ho-1) and superoxide dismutase 1 (Sod1) mRNA expression in C2C12 myotubes. PIC was the most potent inducer of Ho-1 among the PIC analogues and major polyphenols tested. In addition, treatment with PIC suppressed the hydrogen peroxide–induced increase in intracellular reactive oxygen species levels. Our results suggest that PIC protects skeletal muscles from oxidative stress by activating antioxidant enzymes such as HO-1 and SOD1 and can therefore help prevent oxidative stress–induced muscle dysfunction such as muscle fatigue and sarcopenia.  相似文献   

5.
Reactive oxygen and nitrogen species (ROS and RNS) have been proposed as mechanisms of cancer-induced cachexia. In this study, we assessed using Western blot analysis the levels of total protein carbonylation (2,4-dinitrophenylhydrazine assay), both malondialdehyde- (MDA-) and 2-hydroxy-4-nonenal- (HNE-) protein adducts, Mn-superoxide dismutase (Mn-SOD), catalase, heme oxygenase-1 (HO-1) and 3-nitrotyrosine formation in gastrocnemius muscles of rats bearing the Yoshida AH-130 hepatoma. In the muscles of the tumour-bearing animals, protein carbonylation as measured by total levels of carbonyl group formation and both HNE and MDA-protein adducts, and protein tyrosine nitration were significantly greater than in control muscles. Protein levels of the antioxidant enzymes Mn-SOD, catalase, and HO-1 were not significantly modified in the rat cachectic muscles compared to controls. The inefficiency of the antioxidant enzymes in neutralizing excessive ROS production may account for elevated markers of protein oxidation and be responsible for the development of both oxidative and nitrosative stress in cancer-induced cachexia.  相似文献   

6.
This study was designed to examine if diphenyl diselenide (PhSe)2, an organoselenium compound, attenuates oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Swiss mice were pre‐treated with (PhSe)2 (5 mg kg‐1 day‐1) for 7 days. At the 7th day, the animals were submitted to acute physical exercise which consisted of continuous swimming for 20 min. The animals were euthanized 1 and 24 h after the exercise test. The levels of thiobarbituric acid reactive species (TBARS), non‐protein thiols (NPSH) and ascorbic acid and the activity of catalase (CAT) were measured in the lungs and skeletal muscle of mice. Glycogen content was determined in the skeletal muscle of mice. Parameters in plasma (urea and creatinine) were determined. The results demonstrated an increase in TBARS levels induced by acute physical exercise in the skeletal muscle and lungs of mice. Animals submitted to exercise showed an increase in non‐enzymatic antioxidant defenses (NPSH and ascorbic acid) in the skeletal muscle. In lungs of mice, activity of CAT was increased. (PhSe)2 protected against the increase in TBARS levels and ameliorated antioxidant defenses in the skeletal muscle and lungs of mice submitted to physical exercise. These results indicate that acute physical exercise caused a tissue‐specific oxidative stress in the skeletal muscle and lungs of mice. (PhSe)2 protected against oxidative damage induced by acute physical exercise in mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Cellular responses in exertion-induced skeletal muscle injury   总被引:2,自引:0,他引:2  
Muscle injury is a common result of muscle exertion caused by overload and over-activity. In this presentation, an attempt was made to discuss models of muscle injury which involve exertion but not excessive strain, although most functional activities of the extremities require some eccentric muscle actions. Muscle injury is characterized by cellular and extracellular matrix responses which appear to be common to all types of muscle trauma - even in the absence of bleeding. Using tenotomy and functional over-load of the rat hindlimb muscles as examples, illustrations of several of these responses are presented and discussed.  相似文献   

9.
10.
The expression of delta isoforms of calcium-calmodulin/dependent protein kinase II (CaMKII) has been reported in mammalian skeletal muscle; however, their functions in this tissue are largely unknown. This study was conducted to determine if deltaCaMKII expression was altered during regeneration of skeletal muscle fibers in two distinct models. In the first model, necrosis and regeneration were induced in quadriceps of normal mice by intramuscular administration of 50% glycerol. Immunostaining and confocal microscopy revealed that deltaCaMKII expression was clearly enhanced in fibers showing centralized nuclei. The second model was the mdx mouse, which undergoes enhanced muscle necrosis and regeneration due to a mutation in the dystrophin gene. sern blot analysis of hind leg extracts from 4 to 6 week old mdx mice revealed that deltaCaMKII content was decreased when compared to age-matched control mice. This loss in delta kinase content was seen in myofibrillar and membrane fractions and was in contrast to unchanged deltaCaMKII levels in cardiac and brain extracts from dystrophic mice. Confocal microscopy of mdx quadriceps and tibialis muscle showed that deltaCaMKII expression was uniformly decreased in most fibers from dystrophic mice; however, enhanced kinase expression was observed in regenerating muscle fibers. These data support a fundamental role for deltaCaMKII in the regeneration process of muscle fibers in normal and mdx skeletal muscle and may have important implications in the reparative process following muscle death.  相似文献   

11.
Massive increase in radical species can lead to oxidative stress, promoting cell injury and death. This review focuses on experimental evidence of oxidative stress in critical illnesses, sepsis and multisystem organ dysfunction. Oxidative stress could negatively affect organ injury and thus overall survival of experimental models. Based on this experimental evidence, we could improve the rationale of supplementation of antioxidants alone or in combination with standard therapies aimed to reduce oxidative stress as novel adjunct treatment in critical care.  相似文献   

12.
Previous study showed that exercise induces higher oxidative damage and respiratory capacity reduction in hyperthyroid than in euthyroid skeletal muscle. Because impaired cell function can result from mitochondrial dysfunction, we evaluated the changes induced by exercise in oxygen consumption of skeletal muscle mitochondria from euthyroid and hyperthyroid rats. The mitochondrial function was related with indices of oxidative damage and nitric oxide production, scavenger levels and mitochondrial ROS production rates. Our results show that exercise increased state 4 and decreased state 3 respiration, and the highest changes happened in hyperthyroid preparations. This was consistent with the observation that oxidative damage and NO(*) derivative content were increased by T(3) administration and exercise, reaching the highest levels in hyperthyroid exercised rats. Our results also indicate that the high mitochondrial oxidative damage induced by T(3) and exercise is due to enhanced ROS production, which is dependent on increases in mitochondrial content and reduction degree, respectively, of autoxidizable electron carriers.  相似文献   

13.
The mitochondrial flavoprotein apoptosis-inducing factor (AIF) has proved to be either the main mediator of apoptosis or an anti-apoptotic factor via its putative oxidoreductase and peroxide scavenging activities. We report here that 100 muM hydrogen peroxide (H2O2) induced the proliferation of C2C12 myoblasts and over-expression of AIF simultaneously in vitro. Immunofluorescence showed that the over-expression of AIF was located in the cytoplasm. The immunopositive AIF was detected in nuclei 27 days after denervation of skeletal muscle, but in the cytoplasm it was detected 27 days after fiber-damaged skeletal muscle. AIF may be a factor involved in skeletal muscle regeneration.  相似文献   

14.
The phosphatase and tensin homolog (PTEN), originally identified as a tumor suppressor, is an important regulator of the PI3K–Akt pathway. PTEN plays crucial roles in various cellular processes, including cell survival, cell growth, cell proliferation, cell differentiation, and cell metabolism. In metabolic tissues, PTEN expression affects insulin sensitivity and glucose homeostasis. In skeletal muscle, the deletion of PTEN regulates muscle development and protects the mutant mice from insulin resistance and diabetes. Notably, the regulatory role of PTEN in skeletal muscle stem cells has been recently reported. In this review, we mainly discuss the role of PTEN in regulating the development, glucose metabolism, stem cell fate decision, and regeneration of skeletal muscle.  相似文献   

15.
16.
The postmitotic nature and longevity of skeletal muscle fibers permit stable expression of any transfected gene. Direct in vivo injection of plasmid DNA, in both adult and regenerating muscles, is a safe, inexpensive, and easy approach. Here we present an optimized electroporation protocol based on the use of spatula electrodes to transfer cDNA in vivo into the adult myofibers of an anatomically defined muscle, which could be functionally characterized. In our hands, about 80% of adult myofibers were transfected in vivo by different plasmids for GFP fusion proteins or for beta-galactosidase. The luciferase activity increased several orders of magnitude when compared to standard DNA delivery. In an anatomical defined muscle, the wide gene transfer was comparable to or better than that of retrovirus delivery, that recently has been shown to be prone to severe side-effects in human clinical studies. Furthermore, with our method the tissue damage was greatly decreased. Thus, the present work describes in vivo functional electrotransfer of genes in adult skeletal muscle fibers by a protocol that is of great potential for gene therapy, as well as for basic research.  相似文献   

17.
18.
According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain. However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional mitochondria and that the level of ROS production is higher in young compared to aged muscle. Accordingly, we could not find any increase in oxidative modification of proteins in muscle from elderly donors. However, the accumulation of lipofuscin was identified as a robust marker of human muscle aging. The data support a model, where ROS-induced molecular damage is continuously removed, preventing the accumulation of dysfunctional mitochondria despite ongoing ROS production.  相似文献   

19.
20.
The purpose of this study was to understand the nature of the causes underlying the senescence-related decline in skeletal muscle mass and performance. Protein and lipid oxidative damage to upper hindlimb skeletal muscle mitochondria was compared between mice fed ad libitum and those restricted to 40% fewer calories—a regimen that increases life span by 30–40% and attenuates the senescence-associated decrement in skeletal muscle mass and function. Oxidative damage to mitochondrial proteins, measured as amounts of protein carbonyls and loss of protein sulfhydryl content, and to mitochondrial lipids, determined as concentration of thiobarbituric acid reactive substances, significantly increased with age in the ad libitum-fed (AL) C57BL/6 mice. The rate of superoxide anion radical generation by submitochondrial particles increased whereas the activities of antioxidative enzymes superoxide dismutase, catalase, and glutathione peroxidase in muscle homogenates remained unaltered with age in the AL group. In calorically-restricted (CR) mice there was no age-associated increase in mitochondrial protein or lipid oxidative damage, or in superoxide anion radical generation. Crossover studies, involving the transfer of 18- to 22-month-old mice fed on the AL regimen to the CR regimen, and vice versa, indicated that the mitochondrial oxidative damage could not be reversed by CR or induced by AL feeding within a time frame of 6 weeks. Results of this study indicate that mitochondria in skeletal muscles accumulate significant amounts of oxidative damage during aging. Although such damage is largely irreversible, it can be prevented by restriction of caloric intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号