首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of the liver mitogen, lead nitrate [Pb(NO3)2], on protein-undernutrition-induced increased lipid peroxidation and reduced antioxidants levels was investigated in rats. Animals were divided into four groups: A, B, C, and D of five animals each. Animals in groups C and D were placed on a low-protein diet (5% casein) and animals in groups A and B were maintained on a normal diet (16% casein) for 14 wk and fed ad libitum. Animals in groups B and D were each given a single intravenous injection of Pb(NO3)2 (100 μmol/kg body weight) 72 h before sacrifice. The results confirm that protein undernutrition (PU) induced an increase in lipid peroxidation with concomitant reductions in catalase (CAT) activity, glutathione (GSH) level, and superoxide dismutase (SOD) activity. Lead (Pb) treatment, however, provoked increased lipid peroxidation, CAT activity, and GSH level but resulted in reduced SOD activity in both normal and PU-rats. These results suggest that Pb exacerbates liver lipid peroxidation in PU rats and suggests the involvement of free radicals in the pathogenesis of Pb poisoning. In addition, the results show that Pb affects well-fed and PU rats in similar ways but that the CAT activity of PU rats is more sensitive to the effect of Pb than that of normal rats.  相似文献   

2.
The aim of this study was to examine whether xanthine oxidase (XOD)-derived hepatic oxidative damage occurs in the main not during but following strenuous exercise. The degree of damage to hepatic tissue catalyzed by XOD was investigated immediately and 3 h after a single bout of exhausting exercise, in allopurinol and saline injected female Wistar rats. Allopurinol treatment resulted in increased hypoxanthine and decreased uric acid contents in the liver compared with the saline treated group, immediately and 3 h after the exercise. Analysis immediately after the exercise showed no changes in hepatic hypoxanthine, uric acid, and thiobarbituric acid-reactive substance (TBARS) contents in the saline treated group, when compared with the resting controls. However, significant increases in uric acid contents in the saline treated livers were observed 3 h after the exercise, relative to the controls. Hepatic TBARS content in the saline treated group were markedly greater than those in both the control and allopurinol treated groups after 3 h of recovery following the exercise. It was concluded that a single bout of exhausting exercise may impose XOD-derived hepatic oxidative damage, primarily during the recovery phase after acute severe exercise.  相似文献   

3.
Diabetes causes oxidative stress in the liver and other tissues prone to complications. Photobiomodulation by near infrared light (670 nm) has been shown to accelerate diabetic wound healing, improve recovery from oxidative injury in the kidney, and attenuate degeneration in retina and optic nerve. The present study tested the hypothesis that 670 nm photobiomodulation, a low‐level light therapy, would attenuate oxidative stress and enhance the antioxidant protection system in the liver of a model of type I diabetes. Male Wistar rats were made diabetic with streptozotocin (50 mg/kg, ip) then exposed to 670 nm light (9 J/cm2) once per day for 18 days (acute) or 14 weeks (chronic). Livers were harvested, flash frozen, and then assayed for markers of oxidative stress. Light treatment was ineffective as an antioxidant therapy in chronic diabetes, but light treatment for 18 days in acutely diabetic rats resulted in the normalization of hepatic glutathione reductase and superoxide dismutase activities and a significant increase in glutathione peroxidase and glutathione‐S transferase activities. The results of this study suggest that 670 nm photobiomodulation may reduce, at least in part, acute hepatic oxidative stress by enhancing the antioxidant defense system in the diabetic rat model. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:1–8, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20257  相似文献   

4.
Saxitoxins (STXs) are neurotoxins produced by cyanobacteria such as Cylindrospermopsis raciborskii. During bloom events, the production of these compounds causes contamination on public water supply sources. STXs block voltage gated sodium channels and can lead to severe poisoning and death of organisms at different trophic levels. Other toxicity mechanism of STX is the generation of reactive oxygen species (ROS). The aim of this study was to investigate the effect of consumption of water contaminated with a C. raciborskii strain (producing variants of Neo-STX and STX) by rats during 30 days through the analysis of oxidative stress biochemical parameters. Total antioxidant capacity (ACAP) and oxidative stress parameters were analyzed at pre-frontal cortex, hippocampus and liver of adult Wistar rats (2–3 months old). Treated animals ingested concentrations of 3 and 9 μg/L of STX equivalents and were compared with a control group (culture medium ASM-1). At the concentration of 3 μg/L, a decrease in ROS production associated with lower ACAP at hippocampus was observed. Furthermore, a decrease of glutamate cysteine ligase (GCL) activity in the cortex and an increase of brain and liver glutathione concentration were also observed. At the highest concentration (9 μg/L), there was an ACAP increase in the hippocampus as well as in the activity GCL and glutathione-S-transferase in the cortex and hippocampus. At both concentrations, lipid peroxidation was registered in the liver. Therefore, chronic ingestion of STXs can alter the antioxidant defenses and induce oxidative stress in brain and liver. The present results point to the values adopted as threshold limit for STXs in potable waters (3 μg/L) shows already significant chronic effects that alter antioxidant defenses and induce oxidative stress at least in two of the organs studied.  相似文献   

5.
Nickel (Ni), a major environmental pollutant, is known for its wide toxic manifestations. In the present study caffeic acid (CA), one of the most commonly occurring phenolic acids in fruits, grains and dietary supplements, was evaluated for its protective effect against the Ni induced oxidative damage in liver. In this investigation, Ni (20 mg/kg body weight) was administered intraperitoneally for 20 days to induce toxicity. CA was administered orally (15, 30 and 60 mg/kg body weight) for 20 days with intraperitoneal administration of Ni. Ni induced liver damage was clearly shown by the increased activities of serum hepatic enzymes namely aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and lactate dehydrogenase (LDH) along with increased elevation of lipid peroxidation indices (thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides). The toxic effect of Ni was also indicated by significantly decreased levels of enzymatic (superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) and glutathione S-transferase (GST)) and non-enzymatic antioxidants (glutathione (GSH), vitamin C and vitamin E). CA administered at a dose of 60 mg/kg body weight significantly reversed the activities of hepatic marker enzymes to their near normal levels when compared with other two doses. In addition, CA significantly reduced lipid peroxidation and restored the levels of antioxidant defense in the liver. All these changes were supported by histological observations. The results indicate that CA may be beneficial in ameliorating the Ni induced oxidative damage in the liver of rats.  相似文献   

6.
Lead is a pervasive environmental pollutant with no beneficial biological role and its toxicity continues to be a major health problem due to its interference with natural environment. In the present study we have evaluated the chemopreventive effect of glycyrrhizin on lead acetate mediated hepatic oxidative stress, toxicity and tumor promotion related alterations in rats. Lead acetate (100mg/kg bwt., i.p.) enhanced lipid peroxidation with concomitant reduction in glutathione, glutathione reductase, glutathione-S-transferase and glutathione peroxidase activities. There was an increase in the levels of transaminase enzymes and LDH. Lead acetate treatment also enhanced ornithine decarboxylase (ODC) activity and [(3)H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with glycyrrhizin (150 and 300 mg/kg bwt., orally) resulted in a significant decrease in hepatic microsomal lipid peroxidation (P<0.001) and increase in the level of GSH content (P<0.001) and its dependent enzyme. There was significant reduction in the levels of SGPT, SGOT and LDH (P<0.001). A significant inhibition in ODC activity and DNA synthesis (P<0.001) was also observed. On the basis of the above results it can be hypothesized that glycyrrhizin is a potent chemopreventive compound against lead acetate mediated hepatic oxidative stress, toxicity and tumor promotion related responses in rats.  相似文献   

7.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

8.
Spirulina platensis has been advocated as safe food for human use by several investigators. In this study its beneficial dietary effect against liver injuries caused by d-galactosamine (d-GalN) was studied ensuring safety to human health using animal model. Acute hepatotoxicity was induced in Wister rats with d-GalN followed by treatment with butylated hydroxytoluene (BHT) and with Spirulina aqueous extract at various concentrations. The effect of Spirulina at different concentrations were tried and compared with BHT treatment. The animals treated with d-GalN on subsequent treatment by supplementation with Spirulina (6, 9%) in the diets, led to significant reversal in the levels of the antioxidant enzymes through hepatocytes by suppression of negative effect. Spirulina aqueous extract at 9% resulted in a significant decrease in the levels of alkaline phosphatase and infalmatory markers TNFα, IL6 and IL1β and also decreased TBARS, while it showed an increase in oxidative stress marker such as GR, GSH, GST, SOD, GPX and CAT and total protein when compared to the levels recorded with that group treated with d-GalN. Results also indicated that Spirulina aqueous extract at 9% concentration was equally effective in protecting liver damage as it was observed with BHT. Histological studies on liver treated with d-GalN, BHT and Spirulina aqueous extract showed that S. platensis is effective as diet in providing beneficial protective effect. The results obtained in the present study very clearly indicated the positive beneficial protective effect of Spirulina, when used as diet, on the safety and protection of liver from injuries caused by toxicants.  相似文献   

9.
The objective of this study is to determine the effect of lead (pb) on antioxidant enzymes and lipid peroxidation products in different regions of rat brain. Wistar male rats were treated with lead acetate (500 ppm) through drinking water for a period of 8 weeks. Control animals were maintained on sodium acetate. Treated and control rats were sacrificed at intervals of 1st, 4th and 8th week and the whole brains were dissected on ice into four regions namely the cerebellum, the hippocampus, the frontal cortex and the brain stem. Antioxidant enzymes namely catalase and superoxide dismutase in all the four regions of brain were determined. In addition, lipid peroxidation products were also estimated. The results indicated a gradual increase in the activity of antioxidant enzymes in different regions of the brain and this response was time-dependent. However, the increase was more in the cerebellum and the hippocampus compared to other regions of the brain. The lipid peroxidation products also showed a similar trend suggesting increased effect of lead in these two regions of the brain. The data indicated a region-specific oxidative stress in the brain exposed to lead.  相似文献   

10.
Effect of lead on lipid peroxidation in liver of rats   总被引:1,自引:0,他引:1  
The present study was undertaken to understand the biochemical mechanisms of lead toxicity in liver. We observed a significant accumulation of lead in liver following lead treatment, resulting in accentuation of lipid peroxidation. Concomitant to the increase in lipid peroxidation, the activities of antioxidant enzymes, viz., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, were significantly inhibited. A decrease in reduced glutathione with a simultaneous increase in oxidized glutathione was observed following lead exposure, resulting in a reduced GSH/GSSG ratio. These results indicate that lead exerts its toxic effects by enhancing peroxidative damage to the membranes, thus compromising cellular functions.  相似文献   

11.
Salt stress-induced changes in antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR), total chlorophyll content, and lipid peroxidation measured as malondialdehyde (MDA) content, in leaves of a green bean genotype Gevas sirsk 57 (GS57) and cv. Fransiz 4F-89 differing in salt tolerance were investigated. Plants were subjected to three salt treatments (0, 50, and 100 mM NaCl) under controlled climatic conditions for 7 days. The salt-sensitive cv. 4F-89 exhibited a decrease in GR activity at all salt treatments, but the salt-tolerant genotype GS57 showed only a slight decrease in GR under 50 mM salt treatment and an increase under 100 mM salt treatment. CAT and APX activities increased with increasing salt stress in both varieties. CAT and APX activities were higher in the salt-tolerant GS57 than salt-ensitive cv. 4F-89. The two varieties showed an increase in MDA content with an increase in salinity, but the increase in sensitive cv. 4F-89 under salt stress was higher than that in salt-tolerant GS57 genotype. The increasing NaCl concentration caused a reduction in the chlorophyll content in cv. 4F-89 but not in GS57.  相似文献   

12.
Adult males of the Wistar albino rats (Rattus norvegicus) were exposed to lead acetate trihydrate in drinking water (0.0%, 0.25%, 0.5%, 1% and 2% for 1–12 months) to investigate histological and histochemical alterations induced by lead intoxication in the liver. Chronic exposure to subtoxic concentrations of lead produced changes in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly anisokaryosis, nuclear vesiculation, binucleation, cytoplasmic inclusions, cytoplasmic swelling, hydropic degeneration, necrosis and reduction in glycogen content. In addition, portal triads mild chronic inflammation, Kupffer cells hyperplasia and occasional fatty change were seen together with hemosiderosis. No portal fibrosis or cirrhosis was detected due to chronic subtoxic doses of lead exposure in the liver of any member of the dose groups over the entire period of the study. Chronic lead exposure also increased the activities of alkaline phosphatase and α-glycerophosphate-dehydrogenase which might be an adaptation to the metabolic, structural and functional changes in the organelles of hepatic cells due to lead intoxication. The findings revealed that chronic exposure to lead produced significant histological and histochemical changes in the liver of the Wistar albino rats.  相似文献   

13.
Berberine, extracted from golden thread (Coptis chinensis Franch), is an allelochemical exhibiting inhibitory effects on the growth of Microcystis aeruginosa. Berberine-induced oxidative damage and antioxidant responses in M. aeruginosa cells were investigated to elucidate the mechanisms involved in berberine inhibition on algal growth. Malondialdehyde content in M. aeruginosa cells exposed to berberine increased with increased exposure concentration and the prolongation of exposure time. The same changes were observed in O2 activity of M. aeruginosa cells exposed to berberine. Berberine upregulated superoxide dismutase (SOD) activity at low concentrations while downregulating it at high concentrations. SOD activity transitioned from an increase to a decrease from 0 to 72 h exposure to 0.10% berberine. We observed that berberine exposure increased glutathione content in M. aeruginosa cells. The results suggested that berberine-induced oxidative damage might be at least partially responsible for berberine inhibition on M. aeruginosa growth.  相似文献   

14.
The aim of this study was to assess the effects of subchronic exposure to cadmium (Cd) on the antioxidant defense system of red blood cells (RBCs) and lipid peroxide concentration in the plasma, as well as the possible protective role of zinc (Zn). For this purpose, 60 male Wistar rats (8 weeks old) were divided into three groups: the first group was exposed to Cd in the form of CdCl2, administered in five doses (each of 0.4 mg Cd/kg BW) on days 5, 10, 15, 20 and 25, giving a total dose of 2 mg Cd/kg BW, i.p.; the second group was simultaneously exposed to Zn and Cd with the same timeline and the same doses of Cd as the first group but with, in addition, injections of Zn in the form of ZnCl2, administered in doses of 0.8 mg Zn/kg BW, giving a total dose of 4 mg Zn/kg BW, i.p.; a control group received 0.5 mL of physiological saline in an identical manner.

It was shown that exposure to Cd induced a significant decrease (p<0.05) in superoxide dismutase (Zn/Cu SOD) and catalase (CAT) activities in RBCs. Increased lipid peroxide concentration, measured by thiobarbituric acid reactive substances (TBARS), was also observed in the plasma of cadmium-exposed rats. Cd had no effect on glutathione peroxidase (GSH-Px) activity. Zn administration had a beneficial effect on the Cd-induced decrease in Zn/Cu SOD activity (p<0.05) but not on CAT activity. Animals receiving Cd and Zn simultaneously had significantly (p<0.05) lower concentrations of lipid peroxides than rats exposed to Cd alone. Our results indicate that Cd causes oxidative stress and that Zn supply in conditions of exposure to Cd can partially protect against Cd-induced oxidative stress.  相似文献   


15.
In the present study we evaluated the effect of chronic methionine administration on oxidative stress and biochemical parameters in liver and serum of rats, respectively. We also performed histological analysis in liver. Results showed that hypermethioninemia increased chemiluminescence, carbonyl content and glutathione peroxidase activity, decreased total antioxidant potential, as well as altered catalase activity. Hypermethioninemia increased synthesis and concentration of glycogen, besides histological studies showed morphological alterations and reduction in the glycogen/glycoprotein content in liver. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and glucose were increased in hypermethioninemic rats. These findings suggest that oxidative damage and histological changes caused by methionine may be related to the hepatic injury observed in hypermethioninemia.  相似文献   

16.
Cadmium is an environmental toxic metal implicated in human diseases. In the present study, the effect of diphenyl diselenide, (PhSe)(2), on sub-chronic exposure with cadmium chloride (CdCl(2)) was investigated in rats. Male adult Swiss albino rats received CdCl(2) (10 micromol/kg, orally) and (PhSe)(2) (5 micromol/kg, orally) for a period of 30 days. A number of parameters were examined as indicators of toxicity, including hepatic and renal damage, glucose and glycogen levels and markers of oxidative stress. Cadmium content, liver histology, delta-aminolevulinate dehydratase (delta-ALA-D) activity, metallothionein (MT) levels were also evaluated. Cadmium content determined in the tissue of rats exposed to CdCl(2) provides evidence that the liver is the major cadmium target where (PhSe)(2) acts. The concentration of cadmium in liver was about three fold higher than that in kidney, and (PhSe)(2) reduced about six fold the levels of this metal in liver of rats exposed. Rats exposed to CdCl(2) showed histological alterations abolished by (PhSe)(2) administration. (PhSe)(2) administration ameliorated plasma malondialdehyde (MDA) levels, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma-glutamyl transferase (GGT) activities increased by CdCl(2) exposure. Urea and bilirubin levels increased by CdCl(2) exposure were also reduced by (PhSe)(2). In conclusion, this study demonstrated that co-treatment with (PhSe)(2) ameliorated hepatotoxicity and cellular damage in rat liver after sub-chronic exposure with CdCl(2). The proposed mechanisms by which (PhSe)(2) acts in this experimental protocol are its antioxidant properties and its capacity to form a complex with cadmium.  相似文献   

17.
Mercury exposure is second-most common cause of metal poisoning which is quite stable and biotransformed to highly toxic metabolites thus eliciting biochemical alterations and oxidative stress. The aim of present study describes the protective effect of selenium either alone or in combination with N-acetyl cysteine (NAC) against acute mercuric chloride poisoning. The experiment was carried out in male albino Sprague Dawley rats (n = 30) which was divided into five groups. Group 1 served as control. Groups 2–5 were administered mercuric chloride (HgCl2: 12 mol/kg, i.p.) once only, group 2 served as experimental control. Animals of groups 3, 4 and 5 were received N-acetyl cysteine (NAC: 0.6 mg/kg, i.p.) and selenium (Se: 0.5 mg/kg, p.o.) and NAC with Se in combination. Acute HgCl2 toxicity caused significant rise in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, albumin, bilirubin, γ-glutamyl transpeptidase, cholesterol, triglycerides, protein, urea, creatinine, uric acid and blood urea nitrogen content. Animals also showed significantly higher mercury content in liver and kidney, significant rise in lipid peroxidation level with concomitant decrease in reduced glutathione content and the antioxidant enzyme activities of superoxide dismutase and catalase after HgCl2 exposure. Results of the present investigation clearly showed that combination therapy with NAC + Se provide maximum protection against mercury toxicity than monotherapy (alone treated groups) by preventing oxidative degradation of biological membrane from metal mediated free radical attacks.  相似文献   

18.
Gerbera jamesonii H. Bolus ex Hook (Family: Asteraceae) has been successfully acclimatized from temperate to subtropical North Indian plains of Lucknow through in vitro propagation. Flower heads were collected from greenhouse, segmented into 4–16 pieces and cultured in Murashige and Skoog’s medium (MS) (Physiol Plant 15:472–497, 1962) supplemented with 2.87 μM indole-3-acetic acid (IAA) and 8.88 μM N6-benzyladenine (BA) for shoot regeneration. Shoots were subcultured on growth regulator free MS medium. Apical shoot meristems from in vitro plantlets of gerbera were tested in MS medium with different combination of cytokinins [BA, kinetin, and thidiazuron (TDZ)] alongwith 2.68 μM 1-naphthaleneacetic acid (NAA) for shoot multiplication. The optimum results were obtained with 8.88 μM BA. Regenerated plants with well-established root system were transferred to pots containing soil and sand (1:1 v/v) and were kept in humidity chamber with 80–90% relative humidity for 0, 5, 10, 15, 20, and 25 days before they were transferred to field (during October, 2005 to February, 2006). Survival percentage was higher when regenerated plantlets were kept under humidity chamber for 15 days. An attempt was made to obtain basic information on different biochemical changes during acclimatization process of in vitro raised plantlets. Increased lipid peroxidation and high H2O2 content in early stages of acclimatization process reflected a similar process of oxidative stress. Our work suggests that tissue-cultured plants develop antioxidant enzymatic protective system which determine the ability to survive in oxidative stress and up regulation of these enzymes would help to reduce the built up of reactive oxygen species (ROS).  相似文献   

19.
This study aims to investigate the effects of the plant growth regulators (PGRs) (2,3,5-triiodobenzoic acid (TIBA), Naphthaleneacetic acid (NAA), and 2,4-dichlorofenoxyacetic acid (2,4-D)) on serum marker enzymes (aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH)), antioxidant defense systems (reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase (CAT)), and lipid peroxidation content (malondialdehyde = MDA) in various tissues of rats. 50 and 100 ppm of PGRs as drinking water were administered orally to rats (Sprague-Dawley albino) ad libitum for 25 days continuously. The PGRs treatment caused different effects on the serum marker enzymes, antioxidant defense systems, and the MDA content in experimented rats compared to controls. Results showed that TIBA caused a significant decrease in serum AST activity with both the dosage whereas serum CPK was significantly increased with 100 ppm dosage of TIBA. Meanwhile, serum AST, CPK, and LDH activities were significantly increased with both dosage of NAA and 2,4-D. The lipid peroxidation end-product MDA significantly increased in the all tissues treated with both dosages of PGRs without any change in the brain and erythrocyte of rats treated with both the dosages of 2,4-D. The GSH depletion in the kidney and brain tissues of rats treated with both dosages of PGRs was found to be significant. Furthermore, the GSH depletion in the erythrocyte of rats treated with both dosages of PGRs except 50 ppm dosage of 2,4-D was significant too. Also, the GSH level in the liver was significantly depleted with 50 ppm of 2,4-D and NAA, whereas the GSH depletion in the same tissue did not significantly change with the treatment. The activity of antioxidant enzymes was also seriously affected by PGRs; SOD significantly decreased in the liver, heart, kidney, and brain of rats treated with both dosages of NAA, whereas the SOD activity in the erythrocytes, liver, and heart was either significantly decreased or not changed with two doses of 2,4-D and TIBA. Although the CAT activity significantly increased in the erythrocyte and brain of rats treated with both doses of PGRs, it was not changed in the liver, heart, and kidney. Meanwhile, the ancillary enzyme GR activity significantly increased in the brain, heart, and liver but decreased in the erythrocyte and kidney of rats treated with both doses of PGRs. The drug-metabolizing enzyme GST activity significantly increased in the heart and kidney but decreased in the brain and erythrocytes of rats treated with both dosages of PGRs. As a conclusion, the results indicate that PGRs might affect antioxidant potential enzymes, the activity of hepatic damage enzymes, and lipid peroxidation dose independently. Also, the rats resisted to oxidative stress via antioxidant mechanism but the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. These data, along with the determined changes, suggest that PGRs produced substantial systemic organ toxicity in the erythrocyte, liver, brain, heart, and kidney during the period of a 25-day subacute exposure.  相似文献   

20.
Liver fibrosis is a significant health problem which represents the liver’s scarring process and response to injury through deposition of collagen and extracellular matrix, and ultimately leads to cirrhosis. Resveratrol is a naturally occurring phytoalexin found predominantly in grapes. This study aimed to investigate the antifibrotic role of resveratrol on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Rats were divided into four groups and treated for three weeks; control, resveratrol administered orally (20 mg/kg daily), DMN intraperitoneally injected (10 mg/kg 3 days/week), and the last group was pre-treated daily with resveratrol then injected with DMN, 3 days/week. DMN administration induced severe liver pathological alterations. However, oral administration of resveratrol before DMN significantly prevented the induced loss in body weight, as well as the increase in liver weight which arise from DMN administration. Resveratrol has also inhibited the elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin levels. Furthermore, resveratrol significantly increased hepatic reduced glutathione (GSH) levels and reduced the levels of malondialdehyde (MDA) due to its antioxidants effect as well as increased serum protein levels. In addition, DMN induced elevation in hydroxyproline content. On the other hand, hydroxyproline level was significantly reduced in the resveratrol pretreated rats. Resveratrol has also remarkably maintained the normal liver lobular architecture. Moreover, resveratrol had displayed potent potentials to prevent collagen deposition, lymphocytic infiltration, necrosis, steatosis, vascular damage, blood hypertention, cholangiocyte proliferation. It can be concluded that resveratrol has a marked protective role on DMN-induced liver fibrosis in rats, and can be considered as antiproliferative, antihypertensive, as well as antifibrotic agent and may be used to block the development of liver fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号