首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of inhibition of the synthesis of protein, mRNA or rRNA on the progression of the cell cycle have been analyzed in cultures of Catharanthus roseus in which cells were induced to divide in synchrony by the double phosphate starvation method. The partial inhibition of protein synthesis at the G1 phase by anisoniycio or cycloheximide caused the arrest of cells in the G1 phase or delayed the entry of cells into the S phase. When protein synthesis was partially inhibited at the S phase, cell division occurred to about the same extent as in the control. When asynchronously dividing cells were treated with cycloheximide, cells accumulated in the G1 phase, as shown by flow-cytometric analysis. The partial inhibition of mRNA synthesis by α-amanitin at the G1 phase caused the arrest of cells in the G1 phase, although partial inhibition of mRNA synthesis at the S phase had little effect on cell division. In the case of inhibition of synthesis of rRNA by actinomycin D at the G1 phase, initiation of DNA synthesis was observed, but no subsequent DNA synthesis or the division of cells occurred. However, the addition of actinomycin D during the S phase had no effect on cell division. These results suggest that specific protein(s), required for the progression of the cell cycle, are synthesized in the G1 phase, and that the mRNA(s) that encode these proteins are also synthesized at the G1 phase.  相似文献   

2.
Abstract. We have previously found that DNA replication was affected within one cell cycle after seeding Chinese hamster ovary (CHO) cells in the presence of the polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO). We could, however, not rule out if this was due to an effect on the G1/S transition and/or on DNA synthesis elongation. In the present paper, we use a bromodeoxyuridine-flow cytometric method to more specifically study the G1/S transition, the S phase length, and the progression of cells from S phase through G2+ M and into G1, after seeding plateau phase CHO cells at low density in the absence or presence of 5 mM DFMO. We report here that DFMO-induced polyamine depletion increased the length of the S phase within one cell cycle after seeding of CHO cells in the presence of the inhibitor. No effect on the G1/S transition was observed until 2 days after seeding, suggesting that a DFMO-induced lengthening of the G1 phase occurred later than the effect on S phase progression. These results imply that the G2+ M phase was not prolonged until 2 days after seeding CHO cells in the presence of DFMO.  相似文献   

3.
Shortening of the generation cycle in cells in which DNA synthesis had been temporarily inhibited in the previous generation, which has been reported several times in recent years, has been confirmed in HeLa cells. As in the previous studies, the shortening is attributable to accelerated transit of G1 resulting from the accumulation, during the inhibition, of a factor needed for initiation of DNA replication. It is shown that partial (85-96%) inhibition with any one of three inhibitors is effective when the inhibitor is added in G1 or in S, but more complete (99%) inhibition is effective only if the inhibitor is added after cells have entered S. In addition, cells begin to respond to the inhibition after a lag that increases as DNA synthesis in the early part of S is progressively inhibited with aphidicolin, indicating that competence to respond is achieved only after cells have reached a particular point in the replication of their genome.  相似文献   

4.
Abstract The effect of cortisol on the proliferation of the rainbow trout fibroblast cell line, RTG-2, was examined in synchronous and asynchronous cultures. When the transition from G1 to S was synchronized by restoring serum to serum-deprived cultures, the addition of cortisol at the time of serum restoration delayed the entry of cells into S phase. However, if cortisol was added 24 h after serum restoration, at the G1/S transition point, the subsequent peak of DNA synthesis was unaffected. In asynchronous cultures cortisol inhibited [3H]-thymidine and [3H]-uridine but not [3H]-leucine incorporation into acid-insoluble material. If the exogenous nucleoside concentration was raised, [3H]-thymidine but not [3H]-uridine incorporation continued to be inhibited by cortisol. This suggested that cortisol's effect on [3H]-thymidine incorporation reflected a change in entry into S phase and not just on thymidine uptake and metabolism. Cortisol inhibited the proliferation of RTG-2 in asynchronous cultures. At 1000 ng/ml of cortisol a reduction in cell number became apparent before the RTG-2 cultures were confluent, whereas at 100 ng/ml the reduction only became evident in confluent cultures. The synthetic antiglucocorticoid, RU 486, which acts at the level of the corticosteroid receptor, blocked the growth inhibition by cortisol. These results suggest that cortisol regulates rainbow trout fibroblast proliferation via the corticosteroid receptor and that the G1/S transition is one point at which this regulation occurs.  相似文献   

5.
Abstract. The initiation of DNA synthesis and further cell cycle progression in cells during and following exposure to extremely hypoxic conditions in either G1 or G2+M has been studied in human NHIK 3025 cells. Populations of cells, synchronized by mitotic selection, were rendered extremely hypoxic (< 4 p.p.m. O2) for up to 24n h. Cell cycle progression was studied from flow cytometric DNA recordings. No accumulation of DNA was found to take place during extreme hypoxia. Cells initially in G1 at the onset of treatment did not enter S during up to 24 h exposure to extreme hypoxia, but started DNA synthesis in a highly synchronous manner within 1.5 to 2.25 h after reoxygenation. The duration of S phase was only slightly affected (increased by ≅10%) by the hypoxic treatment. This suggests that the DNA synthesizing machinery either remains intact during hypoxia or is rapidly restored after reoxygenation. Cells initially in G2 at the onset of hypoxia were able to complete mitosis, but further cell cycle progression was blocked in the subsequent G^ Following reoxygenation, these cells progressed into S phase, but the initiation of DNA synthesis was delayed for a period corresponding to at least the duration of normal G1 and did not appear in a synchronous manner. In fact, cell cycle variability was found to be increased rather than decreased as a result of exposure to hypoxia starting in G2. We interpret these findings as an indication that important steps in the preparation for initiation of DNA synthesis take place before mitosis. Furthermore, the change in cell cycle duration induced by hypoxia commencing in G1 is of a nature other than that induced by hypoxia commencing in other parts of the cell cycle.  相似文献   

6.
Actinomycin D (0.5 μg/ml) did not prevent M stage cells from entering G1 stage, but blocked their progress from G1 to S stage. The position of the block was approximately 1.4 hr before S stage or just after the beginning of G1 stage. Actinomycin D in this concentration also significantly depressed uridine-3H uptake into G1 stage cells, but did not suppress leucine-3H uptake by M and G1 cells. This suggests that some proteins may be synthesized in M and G1 stage cells by messenger RNA left over from the previous cell cycle. However, entry of G1 cells into S stage would require synthesis of new messenger RNA near the beginning of G1 stage. Puromycin (10 μg/ml) did not prevent M cells from entering G1 stage, but blocked their progress from G1 to S stage. The site of blockage was about 0.7 hr before S stage or in the first two-third of G1 stage. This might be the site where the cells synthesize new G1 proteins necessary for entry to S stage.
Comparison of sensitivities of G1 and G2 stages to the two antibiotics reveals that the puromycin sensitivity of G1 cells was similar to that of G2 cells, but the actinomycin D sensitivity of G1 was greater than that of G2 cells.  相似文献   

7.
SYNOPSIS. Tritiated thymidine and autoradiographic methods were used to investigate the cyclic DNA synthesis in the culture form of Trypanosoma mega. It was found that the mean generation time of 18.9 hours comprises four successive periods: G1, S, G2 and D. The interphase lasts through the first three. S is the phase of DNA synthesis of both the nucleus and the kinetonucleus (kinetoplast). The cell divides during D, beginning with the division of the kinetonucleus. The respective durations of G1, S, G2 and D are 8.5, 7, 2 and 1.4 hours. The close time relationship between the two DNA synthesizing bodies is considered as bringing support to the old theory of the Binucleates and the possible genetic function of the kinetonucleus is suggested.  相似文献   

8.
Abstract Correlated measurements of total cellular RNA and DNA of cultured human keratinocytes by flow cytometry, followed by multivariate analysis, discriminate three distinct subpopulations of cells differing in RNA content. The first subpopulation is comprised of small cells resembling basal cells of epidermis, with low RNA content and long (100–300 h) generation times. The second subpopulation consists of keratinocytes resembling cells in the spinous layer of epidermis, characterized by increased RNA content and shorter (35–40 h) generation times. The third subpopulation consists of the largest, keratinohyalin-containing cells which remain in G1 and undergo terminal differentiation. In contrast to total cellular RNA, correlated measurements of DNA and nuclear RNA reveal that: (1) entrance of all cultured cells from G1 into S phase occurs only after accumulation of the same, threshold amount of nuclear RNA; hence there is only a single population of S + G2+ M-phase cells; (2) there are two distinct subpopulations in G1, one with minimal nuclear RNA content and another with increased RNA. Stathmokinetic experiments indicate that the G1-phase cells with low nuclear RNA have distinctly longer residence times in G1 compared to cells with high nuclear RNA content. Thus, measurements of the total cellular RNA versus nuclear RNA content reveal kinetically distinct cell subpopulations. Whereas total cellular RNA content correlates more with differentiation, nuclear RNA content reflects primarily the kinetic properties of the cell.  相似文献   

9.
Abstract. Two methods involving labelling cells with bromodeoxyuridine (BrdUrd) have been used to study by flow cytometry the effect of hyperthermia (43°C for up to 1 h) on Chinese hamster V79 cells. One method involved the use of an antibody to BrdUrd after pulse-labelling the cells either before or at time intervals after treatment. In the second method, the cells were incubated continuously in BrdUrd after heat treatment, and the components of the cell cycle were then visualized by staining with a combination of a bis-bcnzimidazole and ethidium bromide. All three methods showed that heating at 43°C stopped DNA synthesis which, at 37°C, subsequently recovered reaching the normal rate 8–12 h later. The cells in S phase at the time of treatment then progressed to G2 where they were further delayed. Cells heated in G1. after the recommencement of synthesis, progressed around the cycle, albeit slower than in unheated cells. The difference between the cells in G1 and S phases at the time of treatment may account for the greater sensitivity of S phase cells to hyperthermia.  相似文献   

10.
The direct effects of the nucleoside transporter inhibitor dilazep on the cell cycle of mesangial cells have not before been investigated. The purpose of this study was to elucidate whether dilazep can inhibit the proliferation of mesangial cells and how it interferes with the cell cycle of these cells. DNA histograms were used and BrdUrd uptake rate was measured by flow cytometry. There was no significant difference in the cell numbers among the untreated group and the 10−5M, 10−6M or 10−7M dilazep-treated groups at 24 h of incubation. However, at 48 and 72 h, the cell numbers in the dilazep-treated groups were significantly lower compared with that of the untreated group (P0.005). The DNA histograms of cultured rat mesangial cells at 12, 24, and 48 h of incubation with 10−5 M dilazep showed that the ratio of the S phase population in the dilazep-treated group decreased by 2.2% at 12 h, by 9.6% at 24 h, and by 18.9% at 48 h compared with the untreated group. The ratio of the G0/G1 phase population in the dilazep-treated group significantly increased: 6.8% at 12h (P 0.05), 13.9% at 24 h (P 0.001), and 76.5% at 48 h (P 0.001) compared with the untreated group. A flow cytometric measurement of bivariate DNA/BrdUrd distribution demonstrated that the DNA synthesis rate in the S phase decreased after 6 h (P 0.005) and 12 h (P 0.05) of incubation compared with the untreated group. These results suggest that dilazep inhibits the proliferation of cultured rat mesangial cells by suppressing the G1/S transition by prolonging G2/M and through decreasing the DNA synthesis rate  相似文献   

11.
Abstract. In some cases of acute lymphoblastic leukaemia (ALL) the percentage of cells in G2+ M is higher than anticipated when compared with the percentage in S phase. This increase in G2+ M, as detected by flow cytometry measurement of DNA content, may be due to an accumulation of cells, either in G 2 or during the end of S phase; it may also be related to the existence of small tetraploid clones generally ignored by cytogeneticists. In order to identify possible subpopulations of cells with a DNA index ≥ 2-0, we have compared the results of a cytogenetic analysis to the G2+ M values. We have also studied the distribution of S phase cells in 24 cases of ALL by incorporating 5-bromodeoxyuridine, labelling the cells by indirect immunofluorescence, and analysing them by flow cytometry after propidium iodide staining. The distribution of cells during S phase was quantified: no accumulation of cells was ever observed at the end of S phase. The question of the existence of small tetraploid clones, G2 arrested cells or cells with a G2 elongation remains open. However, we feel that it is more probable that, in this pathology, an elongation of the duration of G2 occurs.  相似文献   

12.
Abstract When cells in culture are released from G0 into cycle by diluting into fresh medium there is a delay of many hours before they re-enter the cycle and start DNA synthesis. A mouse melanoma cell line designated HP2 has been used to investigate the effects of non-standard temperatures between the time of plating and DNA synthesis. When the cells were incubated in a 5% CO2 box at 8°C for periods during the G0-G1 transition there was an extra delay before the start of S, approximately equal to the time that the cells were held at 8°C and independent of the time when the cold pulse was administered. When the cells were cooled to 25°C the delay was longer than the time for which the cells had been kept at 25°C, and this extra delay was also dependent on the point in G0-G1 when the cells were cooled, as though the cells could be reset to an earlier time by this treatment. It is suggested that a labile substance required for progression is destroyed faster than it is made at 25°C but at 8°C the rate of destruction is very low. Another phenomenon noted during these cooling experiments was that the peak height of the S phase profile, as measured by frequent pulse-thymidine incorporation experiments, was substantially higher for cells which had been cooled at a later stage in the G0-G1 transition, even though the overall times at 37°C and at the colder temperature were identical. By varying the temperature of the cold pulse it was possible to separate the change in the peak height and the delay as separate entities.  相似文献   

13.
The cell cycles of the early cleavage stages of the mouse were analyzed by examining Feulgen-stained ova. The period from ovulation to the completion of second cleavage division was investigated. The ova donors were C57BL/6 × DBA/2 female mice, which were hormonally superovulated. To estimate the durations of DNA synthesis and mitotic phases of the cleavage divisions, the ova were pooled into culture medium, and as a function of time, aliquots were removed from the batch of pooled ova. The ova specimens were Feulgen-stained and classified as the ova nuclei in G1, S, G2 or mitosis by use of a cytophotometric technique and then the durations of these phases were determined by probit analysis.
The pronuclear stage had a generation time of 11 hr, with a G1 phase of 6 hr and a short S phase of 1.7 hr. In contrast the two-cell stage had a generation time of 18 hr, with a G1 phase of 2 hr and an S phase of 3 hr. The duration of cleavage division also changed; the first cleavage division spanned 3 hr while the second spanned 1 hr.  相似文献   

14.
Abstract Stationary-phase cells of Cryptococcus neoformans displayed two morphological characteristics: virtually all the cells were unbudded even in the early stationary phase and even when grown in rich media, and average cell size increased from that of exponential-phase cells. DNA contents for small and large stationary-phase cells were determined by quantitative fluorescence microscopy after DNA staining with propidium iodide or DAPI. Small cells contained G, DNA, whereas large unbudded cells had either a G2 or G1 DNA content, indicating that Cr. neoformans can enter into the stationary phase from either the G1 or G2 period.  相似文献   

15.
Abstract. Exposure of Farage, a human B-cell lymphoma line, to IL-4 for 3–11 days led to inhibition of tritiated thymidine ([3H]dT) uptake by the cells. Study of the incorporation of 5-bromodeoxyuridine by Farage cells showed that IL-4 reduced significantly the number of cells in the S phase of the cell cycle and increased the proportion of cells in the G1 phase. Limiting dilution analysis of proliferation demonstrated that IL-4 decreased the frequency of clone-forming cells by 40%. IL-4 did not reduce the viability of Farage cells. On the contrary, IL-4 diminished the spontaneous death of Farage cells in culture, as determined by pulse chase analysis of cells which were labelled with [3H]dT. Moreover, the pre-treatment of Farage cells with IL-4 prevented their death induced by exposure to a high dose of staurosporine. IL-4 abrogated the staurosporine-induced arrest of cells in the G2+ M phase and replaced it by accumulation of cells in the G1 phase. IL-4 protected Farage cells from the radioactive suicide caused by the uptake of [3H]dT by dividing cells. The cytokine failed to prevent the damage to Farage cells exerted by mitomycin C, which affected cellular DNA regardless of the phase of the cell cycle. The data obtained showed that IL-4 inhibited the division of B cells by arresting their progression through the early stages of the cell cycle. This inhibition of the cell efflux from G1 phase plays an important role in the protection against cell death during further stages of the cell cycle.  相似文献   

16.
17.
The subcutaneous injection of irritating substances to baby rats results in a very reproducible wave of synchronized S phase DNA synthesis in hepatic cell involving 20% of the total population. Use has been made of this reaction to detect factors affecting DNA synthesis in hepatic cells. It enables substances to be tested during precise periods of the cell cycle. Two activities which were detected in normal adult rat serum, could not be found in the serum of the baby rat or of the partially hepatectomized adult rat: an activity inhibiting the progression of hepatocytes through the cell cycle in the late G1 phase, and an activity inducing the production of binucleate hepatocytes, effective in the late G1 and in the S phase.  相似文献   

18.
Abstract. Multivariate analysis of the expression of cyclin proteins and DNA content has opened new possibilities for the study of the cell cycle. By virtue of their cell cycle phase specificity, the expression of cyclins may serve, in addition to DNA content, as another marker of a cell's position in the cycle, and provide information about the proliferative potential of cell populations. Several applications of the methodology based on bivariate analysis of DNA content v . expression of B, E and D type cyclins are reviewed: 1 expression of cyclins by individual cells during their progression through the cycle can be studied, using exponentially growing cells without the necessity of cell synchronization or other perturbations of the cycle; 2 cells having the same DNA content but residing in different phases of the cycle (e.g. G2 diploid v. G1 tetraploid) can be distinguished; 3 cell transition from G0 to G1 and progression through G1 (e.g. mitogen stimulated lymphocytes) can be assayed; 4 the population of proliferating cells can be distinguished from noncycling cells based on dual cell labelling with a G1 and G2 cyclin antibody; 5 cyclin restriction points can serve as additional cell cycle landmarks to map the point of action of antitumour drugs; 6 unscheduled expression of cyclins (e.g. the presence of cyclin B1 during G1 and S) can be detected in several tumour transformed cell lines, possibly indicating disregulation of the machmery of cell cycle progression. The last finding 6 is of special importance, because such disregulation may be of prognostic consequence in human tumours.  相似文献   

19.
The duration of the mitotic cycle and of its components was analysed for each of the six successive generations of differentiating spermatogonia (A1, A2, A3, A4, intermediate and B), using radioautographed whole mounts of seminiferous tubules from testes of adult Sprague-Dawley rats. Cell cycles were determined from two successive waves of per cent labeled metaphases obtained during the period of 81 hr after a single dose of 3H-thymidine. Except for the A1 spermatogonia, all spermatogonial types (A2 to B) had similar cell cycle durations of 41-42.5 hr and comparable pre-DNA synthesis phases (G1) of 11-13 hr. Although the combined duration of DNA synthesis (S) and the post-synthesis phase (G2) remained identical for all the cell types including A1, there was a progressive lengthening of the S period at the expense of G2 during the process of spermatogonial maturation. This change was most marked during the transition from A1 to A3 spermatogonia when the S period increased from 14 hr to 21 hr, and the G2 phase shortened from 13 hr to 7.5 hr. This feature seems to be unique to germ cells and may be associated with an increasing amount of heterochromatin in the nucleus. Excluding the development of type A1 cells, the entire process of spermatogonial maturation lasted for 208 hr. Combined data on cell cycle times indicated that every 313 hr or 13 days, a new sequence of spermatogonial differentiation was initiated by the A1 cells. This was equivalent to the duration of one 'cycle' of the seminiferous epithelium as measured by other techniques.  相似文献   

20.
Abstract. Cellular uptake of [3H]thymidine ([3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 × 10-18 mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10%× min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号