首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The binding of rat liver cytochrome c oxidase to phenyl-Sepharose and various alkyl and omega-aminoalkyl agarose gels has been studied. Deoxycholate-solubilized cytochrome c oxidase was tightly bound to hexyl, octyl, omega-aminohexyl, omega-aminooctyl agarose as well as to phenyl-Sepharose. This hydrophobic interaction was used for the purification of cytochrome c oxidase. The enzyme which was eluted from phenyl-Sepharose was devoid of NADH (NADPH)-acceptor reductase activities. The heme a content was 15.4 nmol per mg of protein. The purified enzyme was resolved into seven polypeptides upon polyacrylamide gel electrophoresis in sodium dodecylsulfate with molecular weights of 40,000, 23,200, 21,500, 14,500, 12,600, 8900, and 4900. Antibodies raised in rabbits against the pure enzyme did not cross-react with cytochrome c oxidases from either beef heart or yeast mitochondria. Cytochrome c oxidase bound to octyl-Sepharose or phenyl-Sepharose exhibited a very low catalytic activity. The possible modes of interaction of cytochrome c oxidase with the hydrophobic ligands are discussed.  相似文献   

2.
Incubation of rat homogeneous detergent-solubilized cytochrome b5 with rat liver microsomes resulted in specific binding of the hemoprotein which was rapidly reduced by NADH. The NADH cytochrome c reductase activity in these preparations increased in proportion to the amount of cytochrome bound. However, the extra-bound detergent-solubilized cytochrome b5 did inhibit NADPH-dependent N-demethylations, the NADH synergism and NADPH cytochrome P-450 reductase activity. Manganese protoporphyrin-apocytochrome complex when bound to microsomes in amounts equivalent to detergent-solubilised cytochrome b5 showed no effect on N-demethylation activity. Furthermore, the binding of cytochrome b5 preparations reconstituted from heme and apocytochrome b5 had no effect on either the NADPH-dependent N-demethylation of aminopyrene or ethylmorphine or the NADH synergism observed with rat liver microsomes. In addition, homogeneous cytochrome b5 eluted from three additional Sephadex G-100 columns showed no inhibitory effects when bound to liver microsomes. Spectral analyses of the acid-acetone extract of the hemoprotein showed an absorption peak at 278 nm suggesting that the homogeneous b5 contains contaminating amounts of tightly bound detergent which is responsible for the observed inhibition of mixed function oxidase activity and which is removed during extraction of the heme from the apocytochrome and during further gel filtration applications.  相似文献   

3.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

4.
Isolated cytochrome c oxidase was fractionated by native-gel electrophoresis in Triton X-100, and a preparation of enzyme almost completely free of the usual impurities was recovered. This fraction was used to generate antibodies specific to cytochrome c oxidase. These antibodies inhibited cytochrome c oxidase activity rapidly and completely and immunoprecipitated an enzyme containing seven different subunits from detergent-solubilized mitochondria or submitochondrial particles. Reaction of detergent-solubilized cytochrome c oxidase with [35S]diazobenzenesulfonate labeled all seven subunits although I and VI were much less reactive than the other five components. When cytochrome c oxidase was immunoprecipitated from mitochondria which had been reacted with [35S]DABS, subunits II and III were the only components labeled. When the complex was immunoprecipitated from labeled submitochondrial particles, II, III, IV, V, and VII were all labeled. Polypeptides I and VI were not labeled from either side of the membrane. These results confirm earlier studies which showed that cytochrome c oxidase spans the mitochondrial inner membrane and is asymmetrically arranged across this permeability barrier.  相似文献   

5.
The influence of the detergent environment upon individual electron-transfer rates of cytochrome c oxidase was investigated by stopped-flow spectrophotometry. The effects of three detergents were studied: lauryl maltoside, which supports a high turnover number (TN = 350 s-1), n-dodecyl octaethylene glycol monoether (C12E8), which supports an intermediate TN (150 s-1), and Triton X-100 in which oxidase is nearly inactive (TN = 2-3 s-1). Under limited turnover conditions (cytochrome c:cytochrome c oxidase ratio = 1:1 to 8:1), the rate of oxidation of cytochrome c was measured and compared with the fast reduction of cytochrome a and its relatively slow reoxidation. Two reducing equivalents of cytochrome c were rapidly oxidized in a burst phase; the remaining two to six equivalents were oxidized more slowly, concurrent with the reoxidation of cytochrome a; i.e., the percent reduced cytochrome a reflects the percent reduced cytochrome c. With the resting enzyme, the bimolecular reaction between reduced cytochrome c and cytochrome a was rapid, was insensitive to the detergent environment, and was not the rate-limiting step in the presence of any detergent. The rate of internal electron transfer from cytochrome a to cytochrome a3 in the resting enzyme was slow and only slightly affected by the detergent environment: 1.0-1.1 s-1 in Triton X-100, 5-7 s-1 in C12E8, and 5-12 s-1 in lauryl maltoside. With the pulsed enzyme, the intramolecular electron transfer between cytochrome a and cytochrome a3 increased 4-5-fold in the lauryl maltoside enzyme but did not increase in the Triton X-100 enzyme (intermediate values were obtained with the C12E8 enzyme). We conclude that cytochrome c oxidase acquires the pulsed conformation only in those detergents that support high TN's, e.g., lauryl maltoside and C12E8, but it is locked in the resting conformation in those detergents which result in low TN's, e.g., Triton X-100.  相似文献   

6.
A method for the rapid incorporation of cytochrome c oxidase into membranes has been developed. This method essentially consists of obtaining a preparation of the enzyme in which it is isolated and then dissolving it in a medium containing 0.5% of the detergent Tween 20, which gives a final concentration of 0.0125% after reconstitution. These studies revealed an optimal ratio of 1 microgram of enzyme to 5 mg of phospholipids. A similar optimal ratio was found when the amount of protein was varied. The optimum temperature was found to be 30 degrees C. Without a peak value being reached, it was found that the best reconstitution was obtained at pH 7.0-8.0. When measurements were performed either with a fluorescent cyanine (DiSC3) or by the uptake of tetraphenylphosphonium, it was found that the enzyme, with cytochrome c added to the outside, was capable of generating a membrane potential that was negative inside. Using the same procedure, the enzyme could also be reconstituted into vesicles of yeast plasma membrane. The procedure, then, seems adequate for incorporating cytochrome c oxidase into different kinds of membrane vesicles.  相似文献   

7.
We found that Toyopearl HW-65C gel matrix adsorbed ferredoxin and ferredoxin-NADP+ reductase in the presence of concentrated ammonium sulfate. Ferredoxin was strongly adsorbed on the gel in 80% saturated ammonium sulfate, and ferredoxin-NADP+ reductase was adsorbed in 40% saturated ammonium sulfate. The phenomenon was utilized for purification of ferredoxin and the reductase on a Toyopearl HW-65C: ammonium sulfate column. The technique greatly simplified the early stage of purification of ferredoxin and the reductase. The improved purification methods further involved column treatments with DEAE-Toyopearl 650M and Matrex Red A. The effectiveness of the columns is reported. Since a number of other proteins such as cytochrome c, myoglobin, chymotrypsinogen A, ovalbumin, and glucose oxidase were also adsorbed well in an appropriately concentrated ammonium sulfate solution, the method may be of general use in enzyme purification.  相似文献   

8.
The monomeric and dimeric forms of bovine cytochrome c oxidase (EC 1.9.3.1) were obtained from gel filtration chromatography on Ultrogel AcA 34 and analyzed. Both species contained all 12-13 subunits described for this enzyme. In the dimer 320 molecules [3H]dodecyl-beta-D-maltoside were bound per heme aa3 and in the monomer 360 molecules per heme aa3. The monomers contained 10 mol of tightly bound phospholipid/mol heme aa3 and the dimers 14. Sedimentation coefficients of 15.5-18 S for the dimer and 9.6 S for the monomer were calculated from sucrose density centrifugation analysis and analytical centrifugation. By the laser beam light-scattering technique a Stokes radius of 70 A for the dimeric detergent-lipid-protein complex was measured. From those parameters and the densitometric determined partial specific volumes of the detergent and the enzyme, the molecular weights of 400,000 for the protein moiety of the dimer and 170,000-200,000 for the monomer were calculated. Under very low ionic strength conditions the monomer/dimer equilibrium was found to be dependent on the protein concentration. At low enzyme concentrations (10(-9) M) monomers were predominant, whereas at concentrations above 5 X 10(-6) M the amounts of dimers and higher aggregates were more represented. The cytochrome c oxidase activity, measured spectrophotometrically and analyzed by Eadie-Hofstee plot, was biphasic as a function of cytochrome c concentration for the dimeric enzyme. Pure monomers gave monophasic kinetics. The data, fitting with a homotropic negative cooperative mechanism for the dimer of cytochrome c oxidase, are discussed and compared with other described mechanisms.  相似文献   

9.
A solid-phase immunoadsorbent specific for terminal deoxynucleotidyl transferase has been prepared. The enzyme from calf thymus and acute lymphoblastic leukemia cells binds to columns of this material. Bound enzyme can be eluted in an active form. Selective and rapid purification of terminal deoxynucleotidyl transferase from crude extracts of cells containing this enzyme can be achieved by this method since the immunoadsorbent has no affinity for other cellular DNA polymerases.  相似文献   

10.
To enable metal affinity purification of cytochrome c oxidase reconstituted into phospholipid vesicles, a histidine-tag was engineered onto the C-terminal end of the Rhodobacter sphaeroides cytochrome c oxidase subunit II. Characterization of the natively processed wildtype oxidase and artificially processed forms (truncated with and without a his-tag) reveals Km values for cytochrome c that are 6-14-fold higher for the truncated and his-tagged forms than for the wildtype. This lowered ability to bind cytochrome c indicates a previously undetected role for the C-terminus in cytochrome c binding and is mimicked by reduced affinity for an FPLC anion exchange column. The elution profiles and kinetics indicate that the removal of 16 amino acids from the C-terminus, predicted from the known processing site of the Paracoccus denitrificans oxidase, does not produce the same enzyme as the native processing reaction. MALDI-TOF MS data show the true C-terminus of subunit II is at serine 290, three amino acids longer than expected. When the his-tagged form is reconstituted into lipid vesicles and further purified by metal affinity chromatography, significant improvement is observed in proton pumping analysis by the stopped-flow method. The improved kinetic results are attributed to a homogeneous, correctly oriented vesicle population with higher activity and less buffering from extraneous lipids.  相似文献   

11.
NADPH-cytochrome P-450 (cytochrome c) reductase (EC 1.6.2.4) was solubilized by detergent from microsomal fraction of wounded Jerusalem-artichoke (Helianthus tuberosus L.) tubers and purified to electrophoretic homogeneity. The purification was achieved by two anion-exchange columns and by affinity chromatography on 2',5'-bisphosphoadenosine-Sepharose 4B. An Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. The purified enzyme exhibited typical flavoprotein redox spectra and contained equimolar quantities of FAD and FMN. The purified enzyme followed Michaelis-Menten kinetics with Km values of 20 microM for NADPH and 6.3 microM for cytochrome c. In contrast, with NADH as substrate this enzyme exhibited biphasic kinetics with Km values ranging from 46 microM to 54 mM. Substrate saturation curves as a function of NADPH at fixed concentration of cytochrome c are compatible with a sequential type of substrate-addition mechanism. The enzyme was able to reconstitute cinnamate 4-hydroxylase activity when associated with partially purified tuber cytochrome P-450 and dilauroyl phosphatidylcholine in the presence of NADPH. Rabbit antibodies directed against plant NADPH-cytochrome c reductase affected only weakly NADH-sustained reduction of cytochrome c, but inhibited strongly NADPH-cytochrome c reductase and NADPH- or NADH-dependent cinnamate hydroxylase activities from Jerusalem-artichoke microsomal fraction.  相似文献   

12.
Isolation of human cytochrome oxidase by a one-step affinity chromatography procedure on a Sepharose 4B-ferrocytochrome c matrix following solubilization with the nonionic detergent laurylmaltoside yields an enzyme isolate of adequate purity for producing polyclonal antisera. Such an antiserum produced a distinctive immunoreactive profile in Western immunoblot studies to that reported using the enzyme isolated with ionic detergents. A sensitive and highly reproducible Western immunoblotting method is described for probing mitochondrial fractions prepared from small frozen skeletal muscle biopsies with an antiserum against the human placenta cytochrome oxidase. Application of this method to mitochondrial cytopathy patients with partial cytochrome oxidase deficiency shows that the detected subunits are synthesized in these patients.  相似文献   

13.
The stability of monomeric and dimeric bovine heart cytochrome c oxidase in laurylmaltoside-containing buffers of high ionic strength allowed separation of the two forms by gel-filtration high-performance liquid chromatography (HPLC). A solution of the dimeric oxidase could be diluted without monomerisation. Both monomeric and dimeric cytochrome c oxidase showed biphasic steady-state kinetics when assayed spectrophotometrically at low ionic strength. Thus, the biphasic kinetics did not result from negative cooperativity between the two adjacent cytochrome c binding sites of the monomers constituting the dimeric oxidase. On polyacrylamide gels in the presence of sodium dodecyl sulphate (SDS) a fraction of subunit III of the dimeric enzyme migrated as a dimer, a phenomenon not seen with the monomeric enzyme. This might suggest that in the dimeric oxidase subunit III lies on the contact surface between the protomers. If so, the presumably hydrophobic interaction between the two subunits III resisted dissociation by SDS to some extent. Addition of sufficient ascorbate and cytochrome c to the monomeric oxidase to allow a few turnovers induced slow dimerisation (on a time-scale of hours). This probably indicates that one of the transient forms arising upon reoxidation of the reduced enzyme is more easily converted to the dimeric state than the resting enzyme. Gel-filtration HPLC proved to be a useful step in small-scale purification of cytochrome c oxidase. In the presence of laurylmaltoside the monomeric oxidase eluted after the usual trace contaminants, the dimeric Complex III and the much larger Complex I. The procedure is fast and non-denaturing, although limited by the capacity of available columns.  相似文献   

14.
The stability of monomeric and dimeric bovine heart cytochrome c oxidase in laurylmaltoside-containing buffers of high ionic strength allowed separation of the two forms by gel-filtration high-performance liquid chromatography (HPLC). A solution of the dimeric oxidase could be diluted without monomerisation. Both monomeric and dimeric cytochrome c oxidase showed biphasic steady-state kinetics when assayed spectrophotometrically at low ionic strength. Thus, the biphasic kinetics did not result from negative cooperativity between the two adjacent cytochrome c binding sites of the monomers constituting the dimeric oxidase. On polyacrylamide gels in the presence of sodium dodecyl sulphate (SDS) a fraction of subunit III of the dimeric enzyme migrated as a dimer, a phenomenon not seen with the monomeric enzyme. This might suggest that in the dimeric oxidase subunit III lies on the contact surface between the protomers. If so, the presumably hydrophobic interaction between the two subunits III resisted dissociation by SDS to some extent. Addition of sufficient ascorbate and cytochrome c to the monomeric oxidase to allow a few turnovers induced slow dimerisation (on a time-scale of hours). This probably indicates that one of the transient forms arising upon reoxidation of the reduced enzyme is more easily converted to the dimeric state than the resting enzyme. Gel-filtration HPLC proved to be a useful step in small-scale purification of cytochrome c oxidase. In the presence of laurylmaltoside the monomeric oxidase eluted after the usual trace contaminants, the dimeric Complex III and the much larger Complex I. The procedure is fast and non-denaturing, although limited by the capacity of available columns.  相似文献   

15.
(1) Investigation of the relationship between the detergent concentration and steady-state and pre-steady-state kinetics of cytochrome c oxidase proved to be a valid approach in the study of protein-detergent interaction. (2) Laurylmaltoside, sodium cholate and Triton X-100 influenced the kinetics of cytochrome c oxidase cooperatively at detergent concentrations near their critical micelle concentration. This mode of interaction reflects disaggregation of the oxidase as a result of cooperative binding of the detergent. (3) Addition of increasing concentrations of Tween-80 to the aggregated enzyme caused a more gradual decrease in aggregation of the oxidase, which did not result in a change in activity of the enzyme. This suggests that aggregation of cytochrome c oxidase occurs in a highly regular manner in which no catalytic sites are shielded off. (4) Oxidase aggregates present at detergent concentrations below the critical micelle concentration of laurylmaltoside and Triton X-100 showed considerable activity. Their kinetics were equal to those of the oxidase in Tween-80, suggesting that the protein molecules are aligned in a similar way in all oligomers. Aggregates present in low concentrations of sodium cholate showed turnover rates that were twice as low as those observed with other aggregates. (5) Solubilisation of the oxidase by sodium cholate or Triton X-100 resulted in almost complete inhibition of enzymic activity, whereas the association rate of ferrocytochrome c was almost equal to that found for monomeric oxidase in laurylmaltoside. These results are in agreement with a mixed-type inhibition.  相似文献   

16.
Specific activities of succinate:coenzyme Q reductase, ubiquinone:cytochrome c reductase, cytochrome oxidase, succinate:cytochrome c reductase, succinate oxidase, and ubiquinol oxidase have been measured in rat liver mitochondria in the presence of Triton X-100. The last three activities are much more sensitive to Triton X-100 than the first ones; the data suggest that the electron transport chain components cannot react with each other in the presence of the detergent. At least in the case of succinate:cytochrome c reductase, reconstitution of the detergent-treated membranes with externally added phospholipids reverses the inhibition produced by Triton X-100. These results support the idea that the respiratory chain components diffuse at random in the plane of the inner mitochondrial membrane; the main effect of the detergent would be to impair lateral diffusion by decreasing the area of lipid bilayer. When detergent-treated mitochondrial suspensions are centrifuged in order to separate the solubilized from the particulate material, only the first three enzyme activities mentioned above are found in the supernatants. After centrifugation, a latent ubiquinol:cytochrome c oxidase activity becomes apparent, whereas the same centrifugation process produces inhibition of cytochrome c oxidase in the presence of certain Triton X-100 concentrations. These effects could be due either to a selective solubilization of regulatory or catalytic subunits or to a conformational change of the enzyme-detergent complex.  相似文献   

17.
Reconstituted cytochrome oxidase systems in which the majority of the vesicles contain a single oxidase dimer can be prepared. It is shown that, when these are passed through a cytochrome c affinity column, only those vesicles oriented outwards (such that the active site is available to external cytochrome c) are bound to the support matrix. Protein-free vesicles and vesicles containing an inwardly oriented enzyme are eluted in the void volume. Subsequently, vesicles containing an outwardly oriented enzyme can be eluted from the column at high salt concentrations. This protocol has been used successfully to resolve vesicles of either oxidase orientation when the enzyme is reconstituted with a variety of lipid mixtures. The recovery of oxidase activity from the column ranged between 75 and 94%.  相似文献   

18.
Yeast mitochondria and purified yeast cytochrome c oxidase incorporated into micelles of the nonionic detergent Tween 80 were equilibrated with the hydrophobic aryl azides 5-[125I]iodonaphthyl-1-azide or S-(4-azido-2-nitrophenyl)-[35S]thiophenol. The azides were then converted to highly reactive nitrenes by flash photolysis or by illumination for 2 min and the derivatized cytochrome c oxidase subunits were identified by gel electrophoresis and radioactivity measurements. 5-[125I]Iodonaphthyl-1-azide labeled mainly the three mitochondrially made Subunits I to III and the cytoplasmically made Subunit VII. Subunits IV to VI or cytochrome c bound to the purified enzyme were labeled 9- to 90-fold less. Essentially the same result was obtained with S-(4-azido-2-nitrophenyl)-[35S]thiophenol except that Subunit V was labeled as well. In contrast, all seven subunits as well as cytochrome c were heavily labeled when the enzyme was dissociated with dodecyl sulfate prior to photolabeling with either of the two probes. These data indicate that all subunits of yeast cytochrome c oxidase except Subunits IV and VI are at least partly embedded in the lipid bilayer of the mitochondrial inner membrane.  相似文献   

19.
Yeast cytochrome c oxidase has been isolated by ion exchange chromatography using lauryl maltoside (n-dodecyl beta-D-maltoside) as the solubilizing detergent. The enzyme prepared in this way has a heme aa3 concentration of 8-9 nmol/mg of protein and a turnover number in the range of 180-210 s-1 at pH 6.2 in 0.01% lauryl maltoside at 20 degrees C. Yeast cytochrome c oxidase prepared by any of several previously published methods which use Triton X-100 contains nine subunits. The enzyme isolated in lauryl maltoside contains these same nine different polypeptides and three others, including homologues of subunits VIa and VIb of the mammalian enzyme.  相似文献   

20.
The very high affinity for GTP of glutamate dehydrogenase was used to purify this enzyme by affinity chromatography. After periodic acid oxidation, GTP was covalently bound to an activated Sepharose. When crude mitochondrial extracts were applied on a column of this GTP-Sepharose, glutamate dehydrogenase was retained with very few other proteins. Glutamate dehydrogenase from rat liver was eluted with a KCl gradient with only one contaminating protein. From a pig heart mitochondrial extract the enzyme was purified 300-fold in one step. A chromatography on hydroxyapatite was sufficient to achieve the purification. This very simple technique avoids the long and troublesome crystallization steps generally involved in glutamate dehydrogenase purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号