首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have localized a functional region of the RNA bacteriophage Q beta replicase following an extensive mutational analysis. Using the method of oligonucleotide linker-insertion mutagenesis, we specifically introduced mutations into a cloned DNA copy of the Q beta replicase gene so that the resulting replicase products would putatively contain small amino acid insertions. In a selective phenotypic assay, we screened mutant replicases for RNA-directed replication activity in vivo. Analysis of 37 different mutant clones indicated that Q beta replicase can accept amino acid substitutions and insertions at several sites at the amino and carboxy termini without abolishing functional activity in vivo or in vitro. However, disruption within the internal amino acid sequence resulted almost exclusively in nonfunctional enzyme. The results suggest that the central region of the replicase protein contains a rigid amino acid composition that is required for replicase function, whereas the amino and carboxy termini are much more receptive to small amino acid insertions and substitutions. These experiments should further enable us to analyze the coding function of the Q beta replicase gene independently of other phage RNA functions contained within this nucleotide region.  相似文献   

3.
Q beta phage RNAs with inactivating insertion (8-base) or deletion (17-base) mutations within their replicase genes were prepared from modified Q beta cDNAs and transfected into Escherichia coli spheroplasts containing Q beta replicase provided in trans by a resident plasmid. Replicase-defective (Rep-) Q beta phage produced by these spheroplasts were detected as normal-sized plaques on lawns of cells containing plasmid-derived Q beta replicase, but were unable to form plaques on cells lacking this plasmid. When individual Rep- phage were isolated and grown to high titer in cells containing plasmid-derived Q beta replicase, revertant (Rep+) Q beta phage were obtained at a frequency of ca. 10(-8). To investigate the mechanism of this reversion, a point mutation was placed into the plasmid-derived Q beta replicase gene by site-directed mutagenesis. Q beta mutants amplified on cells containing the resultant plasmid also yielded Rep+ revertants. Genomic RNA was isolated from several of the latter phage revertants and sequenced. Results showed that the original mutation (insertion or deletion) was no longer present in the phage revertants but that the marker mutation placed into the plasmid was now present in the genomic RNAs, indicating that recombination was one mechanism involved in the reversion of the Q beta mutants. Further experiments demonstrated that the 3' noncoding region of the plasmid-derived replicase gene was necessary for the reversion-recombination of the deletion mutant, whereas this region was not required for reversion or recombination of the insertion mutant. Results are discussed in terms of a template-switching model of RNA recombination involving Q beta replicase, the mutant phage genome, and plasmid-derived replicase mRNA.  相似文献   

4.
5.
6.
A very efficient replicase template has been isolated from the products of spontaneous RNA synthesis in an in vitro Q beta replicase reaction that was incubated in the absence of added RNA. This template was named RQ135 RNA because it is 135 nucleotides in length. Its sequence consists entirely of segments that are homologous to ribosomal 23 S RNA and the phage lambda origin of replication. The sequence segments are unrelated to the sequence of Q beta bacteriophage genomic RNA. Nonetheless, this natural recombinant is replicated in vitro at a rate equal to the most efficient of the known Q beta RNA variants. Apparently, the structural properties that ensure recognition of an RNA template by Q beta replicase are not confined to viral RNA, but can appear as a result of recombination among other RNAs that usually occur in cells.  相似文献   

7.
We report the nucleotide sequence of the Group IV RNA bacteriophage SP. The entire sequence is 4276 nucleotides long. Four cistrons have been identified by comparison with the related Group III phage Q beta. The maturation protein contains 449 amino acids, the coat protein contains 131 amino acids, the read-through protein contains 330 amino acids and the replicase beta-subunit contains 575 amino acids. SP is 59 nucleotides longer than Q beta. We have analyzed both sequence and structural conservation between SP and Q beta and shown that the sequences for the coat and central region of the replicase are strongly conserved between the two genomes. We also show that the S and M replicase binding sites of Q beta are strongly conserved in SP. Interestingly, the base composition of SP and Q beta differ significantly from one another, and most of the differences can be accounted for by a strong preponderance of U in the third position of each codon of Q beta relative to SP. We also compare conserved hairpins associated with potential coat protein and replicase binding sites.  相似文献   

8.
Function of bacteriophage Qbeta replicase containing an altered subunit IV   总被引:1,自引:0,他引:1  
In order to elucidate the function of elongation factor Ts in Qβ replicase, enzyme was obtained from a Qβ-infected Escherichia coli mutant HAK88, which carries an altered EFTs2 with a thermolabile catalytic activity. HAK88 Qβ replicase was found to be quite unstable at 42 °C. Further studies indicated that the mutant enzyme exhibits temperature sensitivity with regard to GTP binding ability but not with Qβ RNA and poly(C) binding. These results suggest that the function of EFTs in Qβ replicase is closely related to the binding of GTP to the enzyme.A defect in Qβ replicase also appears when it is reconstituted from the Qβ replicase subunit complex I–II and the HAK88 EFTu-EFTs complex. Several lines of evidence obtained by using the reconstituted enzyme suggest strongly that the EFTs function is involved specifically in initiation of RNA synthesis, but not in the elongation reaction.  相似文献   

9.
We have identified, for the first time, regions of cis-acting RNA elements within the bacteriophage Q beta replicase cistron by analyzing the infectivities of 76 replicase gene mutant phages in the presence of a helper replicase. Two separate classes of mutant Q beta phage genomes (35 different insertion mutants, each containing an insertion of 3 to 15 nucleotides within the replicase gene, and 41 deletion genomes, each having from 15 to 935 nucleotides deleted from different regions of the gene) were constructed, and their corresponding RNAs were tested for the ability to direct the formation of progeny virus particles. Each mutant phage was tested for plaque formation in an Escherichia coli (F+) host strain that supplied helper Q beta replicase in trans from a plasmid DNA. Of the 76 mutant genomes, 34% were able to direct virus production at or close to wild-type levels (with plaque yield ratios of greater than 0.5), another 36% also produced virus particles, but at much lower levels than those of wild-type virus (with plaque yield ratios of less than 0.05), and the remaining 30% produced no virus at all. From these data, we have been able to define regions within the Q beta replicase gene that contain functional cis-acting RNA elements and further correlate them with regions of RNA that are solely required to code for functional RNA polymerase.  相似文献   

10.
Autocatalytic replication of a recombinant RNA   总被引:11,自引:0,他引:11  
We demonstrate that a heterologous RNA sequence can be copied in vitro by Q beta replicase when it is inserted into a naturally occurring Q beta replicase template. A recombinant RNA was constructed by inserting decaadenylic acid between nucleotides 63 and 64 of MDV-1 (+) RNA, using phage T4 RNA ligase. The insert was located away from regions of the template known to be required for the binding of the replicase and for the initiation of product strand synthesis. To minimize the disruption of template structure, we inserted the heterologous sequence into a hairpin loop on the exterior of the molecule. Q beta replicase copied this recombinant RNA in vitro, and the complementary product strands served as templates for the synthesis of additional copies of the original recombinant RNA. The reaction was therefore autocatalytic and the amount of recombinant RNA increased exponentially. A 300-fold amplification of the recombinant RNA occurred within nine minutes. Insertion of biologically significant RNAs into the MDV-1 RNA sequence should allow them to be replicated autocatalytically.  相似文献   

11.
C K Biebricher  R Luce 《The EMBO journal》1992,11(13):5129-5135
SV-11 is a short-chain [115 nucleotides (nt)] RNA species that is replicated by Q beta replicase. It is reproducibly selected when MNV-11, another 87 nt RNA species, is extensively amplified by Q beta replicase at high ionic strength and long incubation times. Comparing the sequences of the two species reveals that SV-11 contains an inverse duplication of the high-melting domain of MNV-11. SV-11 is thus a recombinant between the plus and minus strands of MNV-11 resulting in a nearly palindromic sequence. During chain elongation in replication, the chain folds consecutively to a metastable secondary structure of the RNA, which can rearrange spontaneously to a more stable hairpin-form RNA. While the metastable form is an excellent template for Q beta replicase, the stable RNA is unable to serve as template. When initiation of a new chain is suppressed by replacing GTP in the replication mixture by ITP, Q beta replicase adds nucleotides to the 3' terminus of RNA. The replicase uses parts of the RNA sequence, preferentially the 3' terminal part for copying, thereby creating an interior duplication. This reaction is about five orders of magnitude slower than normal template-instructed synthesis. The reaction also adds nucleotides to the 3' terminus of some RNA molecules that are unable to serve as templates for Q beta replicase.  相似文献   

12.
13.
Terminal adenylation in the synthesis of RNA by Q beta replicase   总被引:10,自引:0,他引:10  
We investigated the apparent requirement that Q beta replicase must add a nontemplated adenosine to the 3' end of newly synthesized RNA strands. We used abbreviated MDV-1 (+)-RNA templates that lacked either 62 or 63 nucleotides at their 5' end in Q beta replicase reactions. The MDV-1 (-)-RNA strands synthesized from these abbreviated (+)-strand templates were released from the replication complex, yet they did not possess a nontemplated 3'-terminal adenosine. These results imply that, despite observations that all naturally occurring RNAs synthesized by Q beta replicase possess a nontemplated 3'-adenosine, the addition of an extra adenosine is not an obligate step for the release of completed strands. Since the abbreviated templates lacked a normal 5' end, it is probable that a particular sequence at the 5' end of the template is required for terminal adenylation to occur.  相似文献   

14.
Localization of the Q beta replicase recognition site in MDV-1 RNA   总被引:4,自引:0,他引:4  
Fragments of MDV-1 RNA (a small, naturally occurring template for Q beta replicase) that were missing nucleotides at either their 5' end or their 3' end were still able to form a complex with Q beta replicase. By assaying the binding ability of fragments of different length, it was established that the binding site for Q beta replicase is determined by nucleotide sequences that are located near the middle of MDV-1 RNA. Fragments missing nucleotides at their 5' end were able to serve as templates for the synthesis of complementary strands, but fragments missing nucleotides at their 3' end were inactive, indicating that the 3'-terminal region of the template is required for the initiation of RNA synthesis. The nucleotide sequences of both the 3' terminus and the central binding region of MDV-1 (+) RNA are almost identical to sequences at the 3' terminus and at an internal region of Q beta (-) RNA.  相似文献   

15.
The effect of polyamines on Q beta and MS2 phage RNA-directed synthesis of three kinds of protein in an Escherichia coli cell-free system has been studied. With both phage RNAs, the degree of stimulation of protein synthesis by spermidine was in the order RNA replicase greater than A protein, while the synthesis of coat protein was not stimulated significantly by spermidine. The synthesis of RNA replicase was stimulated by 1 mM spermidine approx. 8-fold. From the results of Q beta RNA direct alanyl-tRNA and seryl-tRNA binding to ribosomes and initiation dipeptide synthesis, it is suggested that the preferential stimulation of the synthesis of RNA replicase by spermidine is due at least partially to the stimulation of the initiation of RNA replicase synthesis.  相似文献   

16.
Numerous RNA species of different length and nucleotide sequence grow spontaneously in vitro in Q beta replicase reactions where no RNA templates are added deliberately. Here, we show that this spontaneous RNA synthesis by Q beta replicase is template directed. The immediate source of template RNA can be the laboratory air, but there are ways to eliminate, or at least substantially reduce, the harmful effects of spontaneous synthesis. Solitary RNA molecules were detected in a thin layer of agarose gel containing Q beta replicase, where they grew to form colonies that became visible upon staining with ethidium bromide. This result provides a powerful tool for RNA cloning and selection in vitro. We also show that replicating RNAs similar to those growing spontaneously are incorporated into Q beta phage particles and can propagate in vivo for a number of phage generations. These RNAs are the smallest known molecular parasites, and in many aspects they resemble both the defective interfering genomes of animal and plant viruses and plant virus satellite RNAs.  相似文献   

17.
L A Voronin 《Biochimie》1992,74(5):491-494
Q beta replicase replicates a variety of enzyme-specific small RNAs in addition to the phage genomic RNA. The sequence analysis has revealed that all these RNAs are potentially capable of forming a consensus secondary structure element. It represents a stalk which is formed by the 5'-GGG ... and ... CCCA-3' complementary stretches at the termini of the replicating RNA molecules and adjacent 5'- and 3'-hairpins, which may form a stacking with the stalk. The structure found is rather similar to the analogous structure in the tRNA molecule. The genomic RNA of the Q beta phage and other related phages can also form a similar structural element.  相似文献   

18.
Interactions of Q beta replicase with Q beta RNA   总被引:15,自引:0,他引:15  
The interactions of Qβ replicase with Qβ RNA were investigated by treating replicase-Qβ RNA complexes under various conditions with ribonuclease T1, and by characterizing enzyme-bound RNA fragments recovered by a filter binding technique. Evidence for replicase binding at two internal regions of Qβ RNA was obtained. One region (at about 1250 to 1350 nucleotides from the 5′ end) overlaps with the initiation site for coat protein synthesis; this interaction is thought to be inessential for template activity but rather to be involved in the regulation of protein synthesis. Binding to this site (called the S-site) requires moderate concentrations of salt but no magnesium ions. The other region (at about 2550 to 2870 nucleotides from the 5′ end) is probably essential for template activity; binding to this site (called the M-site) is dependent on the presence of magnesium ions. The nucleotide sequences of the RNA fragments from the two sites were determined and found to have no common features. Under the conditions tested, replicase binding at the 3′ end of Qβ RNA could not be demonstrated, except when initiation of RNA synthesis was allowed to occur in the presence of GTP and host factor. If instead of intact Qβ RNA, a complete RNAase T1 digest of Qβ RNA was allowed to bind to replicase, oligonucleotides from the S-site and the M-site, and oligonucleotides from a region close to the 3′ end, were found to have the highest affinity to the enzyme.The RNA fragments recovered in highest yield, M-2 and S-3 from the M and S-site, respectively, were isolated on a preparative scale and their enzyme binding properties were studied. In competition assays with random RNA fragments of the same size, selective binding was observed both for the M and the S-site fragment. Partial competition for replicase binding was found if M-2 and S-3 were presented simultaneously to the enzyme. Either fragment, if preincubated with replicase, caused a specific inhibition of initiation of Qβ RNA-directed RNA synthesis, without inhibiting the poly(rC)-directed reaction.The results are discussed in terms of a model of replicase-Qβ RNA recognition. Template specificity is attributed to binding of internal RNA regions to replicase, resulting in a specific spatial orientation of the RNA by which the inherently weak, but essential, interaction at the 3′ end is allowed to occur and to lead to the initiation of RNA synthesis.  相似文献   

19.
Escherichia coli cells harboring an altered Q beta RNA replicase which has amino acid substitutions of the glycine residue at position 357 in the conserved sequence Tyr356-Gly357-Asp358-Asp359 of the beta-subunit protein lost the replicase activity but interfered with proliferation of Q beta phage [Inokuchi and Hirashima (1987) J. Virol. 61, 3946-3949]. To examine the mechanism of the interference, we further analyzed various mutants lacking the carboxy-terminal region of the beta-subunit protein. The cells expressing the beta-subunit gene with up to 17% deletion from the carboxy-terminus of the protein prevented the proliferation of Q beta phage. However, in the case that the deletion extended beyond 25% from the carboxy-terminus, the cells showed no interference. In addition, when the interference took place, the phage coat protein synthesis was inhibited. These results indicate that the region between amino acids 440 and 487 of the beta-subunit protein is involved in the interference and suggest that the defective replicase inhibits the phage coat protein synthesis by competing with the ribosomes at the initiation site of the coat gene.  相似文献   

20.
Interference with viral infection by defective RNA replicase.   总被引:16,自引:6,他引:10  
RNA-dependent RNA and DNA polymerases have a conserved segment, Tyr-X-Asp-Asp (G. Karmer and P. Argos, Nucleic Acids Res. 12:7269-7282, 1984). To investigate the function of this segment, we changed the Gly residue at position 357 in the conserved sequence Tyr-356-Gly-357-Asp-358-Asp-359 of the replicase of RNA coliphage Q beta to Ala, Ser, Pro, Met, or Val and examined the replicase activity in vivo. Cells carrying the variant plasmids lost the replicase activity and severely inhibited the proliferation of phage Q beta (group III) and related phage SP (group IV) by suppressing phage RNA synthesis. In contrast, substitution of the Gly residue at 390 showed only a slight inhibitory effect, although replicase activity was also lost. These results suggest that the cells harboring an altered replicase at the conserved segment can interfere specifically with the wild-type phage and different but related phage infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号