首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pit1 is the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related human protein Pit2 is a receptor for amphotropic murine leukemia virus (A-MuLV). The A-MuLV-related isolate 10A1 can utilize both Pit1 and Pit2 as receptors. A stretch of amino acids named region A was identified in Pit1 (residues 550 to 558 in loop 4) as critical for GALV and FeLV-B receptor function. We have here investigated the role of region A in A-MuLV and 10A1 entry. Insertion of a single amino acid in region A of mouse Pit1 resulted in a functional A-MuLV receptor, showing that region A plays a role in A-MuLV infection. Moreover, the downregulation of 10A1 receptor function by changes in region A of human Pit1 indicates that this region is also involved in 10A1 entry. Therefore, region A seems to play a role in infection by all viruses utilizing Pit1 and/or Pit2 as receptors.  相似文献   

2.
Tailor CS  Nouri A  Kabat D 《Journal of virology》2000,74(20):9797-9801
Chinese hamster ovary (CHO) cells are resistant to infections by gibbon ape leukemia virus (GALV) and amphotropic murine leukemia virus (A-MLV) unless they are pretreated with tunicamycin, an inhibitor of N-linked glycosylation. These viruses use the related sodium-phosphate symporters Pit1 and Pit2, respectively, as receptors in nonhamster cells, and evidence has suggested that the corresponding transporters of CHO cells may be masked by tunicamycin-sensitive secreted inhibitors. Although the E36 line of Chinese hamster cells was reported to secrete the putative Pit2 inhibitor and to be sensitive to the inhibitory CHO factors, E36 cells are highly susceptible to both GALV and A-MLV in the absence of tunicamycin. Moreover, expression of E36 Pit2 in CHO cells conferred tunicamycin-independent susceptibilities to both viruses. Based on the latter results, it was suggested that E36 Pit2 must functionally differ from the endogenous Pit2 of CHO cells. To test these ideas, we analyzed the receptor properties of CHO Pit1 and Pit2 in CHO cells. Surprisingly, and counterintuitively, transfection of a CHO Pit2 expression vector into CHO cells conferred strong susceptibility to both GALV and A-MLV, and similar overexpression of CHO Pit1 conferred susceptibility to GALV. Thus, CHO Pit2 is a promiscuous functional receptor for both viruses, and CHO Pit1 is a functional receptor for GALV. Similarly, we found that the natural resistance of Mus dunni tail fibroblasts to subgroup C feline leukemia viruses (FeLV-C) was eliminated simply by overexpression of the endogenous FeLV-C receptor homologue. These results demonstrate a novel and simple method to unmask latent retroviral receptor activities that occur in some cells. Specifically, resistances to retroviruses that are caused by subthreshold levels of receptor expression or by stoichiometrically limited masking or interference mechanisms can be efficiently overcome simply by overexpressing the endogenous receptors in the same cells.  相似文献   

3.
Murine cells are typically resistant to gibbon ape leukemia virus (GALV). MMMol, a Japanese feral mouse cell line, is an exception in that these cells are susceptible to infection by GALV. We show here that MMMol cells are further distinguished by their unusual receptor properties. MMMol cells infected by GALV are resistant to subsequent infection not only by GALV but also by amphotropic murine leukemia virus. This suggests that GALV can enter MMMol via not only the GALV receptor (MolPit1) but also the amphotropic murine leukemia virus receptor (MolPit2). Therefore, MolPit2 was cloned, sequenced, and compared with the previously reported sequence of MolPit1. Earlier studies have shown that a stretch of nine residues (position 550 to 558) in the fourth extracellular domain of Pit1 is crucial for GALV entry and that an acidic residue at position 550 is indispensable. However, MolPit1 has isoleucine at this position and MolPit2 has glutamine at the corresponding position (position 522), thus breaking this consensus. To determine what effect these specific changes in the fourth extracellular domain of MolPit1 and MolPit2 have on GALV receptor function, chimeric receptors were made by substituting the fourth extracellular domain of either MolPit1 or MolPit2 for the same region of Pit2, a nonfunctional receptor for GALV. These chimeras were then tested in MDTF, a cell line that lacks functional GALV receptors and is resistant to GALV. Results show that MDTF expressing these chimeras became susceptible to GALV, whereas cells expressing wild-type Pit2 remained resistant. Further, the MolPit1 chimera was identical to Pit1 in efficiency, but the MolPit2 chimera proved substantially less efficient.  相似文献   

4.
Human cells express distinct but related receptors for the gibbon ape leukemia virus (GALV) and the amphotropic murine leukemia virus (A-MuLV), termed Pit1 and Pit2, respectively. Pit1 is not able to function as a receptor for A-MuLV infection, while Pit2 does not confer susceptibility to GALV. Previous studies of chimeric receptors constructed by interchanging regions of Pit1 and Pit2 failed to clarify the determinants unique to Pit2 which correlate with A-MuLV receptor function. In order to identify which regions of Pit2 are involved in A-MuLV receptor function, we exchanged the putative second and third extracellular domains of Pit1, either individually or together, with the corresponding regions of Pit2. Our functional characterization of these receptors indicates a role for the putative second extracellular domain (domain II) in A-MuLV infection. We further investigated the influence of domain II with respect to A-MuLV receptor function by performing site-specific mutagenesis within this region of Pit2. Many of the mutations had little or no effect on receptor function. However, the substitution of serine for methionine at position 138 (S138M) in a Pit1 chimera containing domain II of Pit2 resulted in a 1,000-fold reduction in A-MuLV receptor function. Additional mutations made within domain II of the nonfunctional S138M mutant restored receptor function to nearly wild-type efficiency. The high degree of tolerance for mutations as well as the compensatory effect of particular substitutions observed within domain II suggests that an element of secondary structure within this region plays a critical role in the interaction of the receptor with A-MuLV.  相似文献   

5.
Region A of Pit1 (residues 550 to 558 in domain IV) and related receptors has remained the only sequence implicated in gibbon ape leukemia virus (GALV) infection, and an acidic residue at the first position appeared indispensable. The region has also been proposed to be the GALV binding site, but this lacks empirical support. Whether an acidic residue at the first position in this sequence is a definitive requirement for GALV infection has also remained unclear; certain receptors retain function even in the absence of this acidic residue. We report here that in Pit1 an acidic residue is dispensable not only at position 550 but also at 553 alone and at both positions. Further, the virus requires no specific residue at either position. Mutations generated a collection of region A sequences, often with fundamentally different physicochemical properties (overall hydrophobicity or hydrophilicity and net charge of -1, or 0, or +1), and yet Pit1 remained an efficient GALV receptor. A comparison of these sequences and a few previously published ones from highly efficient GALV receptors revealed that every position in region A can vary without affecting GALV entry. Even Pit2 is nonfunctional for GALV only because it has lysine at the first position in its region A, which is otherwise highly diverse from region A of Pit1. We propose that region A itself is not the GALV binding motif and that other sequences are required for virus entry. Indeed, certain Pit1/Pit2 chimeras revealed that sequences outside domain IV are specifically important for GALV infection.  相似文献   

6.
We have sequenced the envelope genes from each of the five members of the gibbon ape leukemia virus (GALV) family of type C retroviruses. Four of the GALVs, including GALV strain SEATO (GALV-S), were originally isolated from gibbon apes, whereas the fifth member of this family, simian sarcoma-associated virus (SSAV), was isolated from a woolly monkey and shares 78% amino acid identity with GALV-S. To determine whether these viruses have identical host ranges, we evaluated the susceptibility of several cell lines to either GALV-S or SSAV infection. GALV-S and SSAV have the same host range with the exception of Chinese hamster lung E36 cells, which are susceptible to GALV-S but not SSAV. We used retroviral vectors that differ only in their envelope composition (e.g., they contain either SSAV or GALV-S envelope protein) to show that the envelope of SSAV restricts entry into E36 cells. Although unable to infect E36 cells, SSAV infects GALV-resistant murine cells expressing the E36-derived viral receptor, HaPit2. These results suggest that the receptors present on E36 cells function for SSAV. We have constructed several vectors containing GALV-S/SSAV chimeric envelope proteins to map the region of the SSAV envelope that blocks infection of E36 cells. Vectors bearing chimeric envelopes comprised of the N-terminal region of the GALV-S SU protein and the C-terminal region of SSAV infect E36 cells, whereas vectors containing the N-terminal portion of the SSAV SU protein and C-terminal portion of GALV-S fail to infect E36 cells. This finding indicates that the region of the SSAV envelope protein responsible for restricting SSAV infection of E36 cells lies within its amino-terminal region.  相似文献   

7.
Murine leukemia virus (MLV)-derived envelope proteins containing alterations in or adjacent to the highly conserved PHQ motif present at the N terminus of the envelope surface subunit (SU) are incorporated into vector particles but are not infectious due to a postbinding block to viral entry. These mutants can be rendered infectious by the addition of soluble receptor-binding domain (RBD) proteins in the culture medium. The RBD proteins that rescue the infectivity of these defective MLV vectors can be derived from the same MLV or from other MLVs that use distinct receptors to mediate entry. We have now constructed functional immunologically reactive gibbon ape leukemia virus (GALV) envelope proteins, tagged with a feline leukemia virus (FeLV)-derived epitope tag, which are efficiently incorporated into infectious particles. Tagged GALV envelope proteins bind specifically to cells expressing the phosphate transporter protein Pit1, demonstrating for the first time that Pit1 is the binding receptor for GALV and not a coreceptor or another type of GALV entry factor. We have also determined that GALV particles bearing SU proteins with an insertion C-terminal to the PHQ motif (GALV I(10)) bind Pit1 but fail to infect cells. Incubation with soluble GALV RBD renders GALV I(10) particles infectious, whereas incubation with soluble RBDs from MLV or FeLV-B does not. This finding is consistent with the results obtained by Lauring et al. using FeLV-T, a virus that employs Pit1 as a receptor but requires soluble FeLV RBD for entry. MLV and GALV RBDs are not able to render FeLV-T infectious (A. S. Lauring, M. M. Anderson, and J. Overbaugh, J. Virol. 75:8888-8898, 2001). Together, these results suggest that fusion-defective FeLV-T and GALV are restricted to homologous RBD rescue of infectivity.  相似文献   

8.
Feline leukemia virus subgroup B (FeLV-B) and gibbon ape leukemia virus (GALV) utilize the human protein Pit1 but not the related protein, Pit2, as receptor. A stretch of 9 amino acids, named region A, was identified in the putative fourth extracellular loop of Pit1 (residues 550 through 558) as critical for FeLV-B and GALV receptor function. However, the presence of Pit1 region A did not confer receptor function for FeLV-B upon Pit2, while it did so for GALV. We have here shown that the presence of two Pit1-specific loop 4 residues (tyrosine 546 and valine 548) in addition to Pit1 region A is sufficient to make Pit2 an efficient FeLV-B receptor; that is, a stretch of 13 amino acids encompassing all loop 4 amino acid differences between Pit1 and Pit2 comprises a C-terminal determinant for FeLV-B receptor function. Thus, the same limited receptor region is sufficient to confer receptor function for both viruses upon Pit2.  相似文献   

9.
Pit2 is the human receptor for amphotropic murine leukemia virus (A-MuLV); the related human protein Pit1 does not support A-MuLV entry. Interestingly, chimeric proteins in which either the N-terminal or the C-terminal part of Pit2 was replaced by the Pit1 sequence all retained A-MuLV receptor function. A possible interpretation of these observations is that Pit1 harbors sequences which can specify A-MuLV receptor function when presented in a protein context other than Pit1, e.g., in Pit1-Pit2 hybrids. We reasoned that such Pit1 sequences might be identified if presented in the Neurospora crassa protein Pho-4. This protein is distantly related to Pit1 and Pit2, predicted to have a similar membrane topology with five extracellular loops, and does not support A-MuLV entry. We show here that introduction of the Pit1-specific loop 2 sequence conferred A-MuLV receptor function upon Pho-4. Therefore, we conclude that (i) a functional A-MuLV receptor can be constructed by combining sequences from two proteins each lacking A-MuLV receptor function and that (ii) a Pit1 sequence can specify A-MuLV receptor function when presented in another protein context than that provided by Pit1 itself. Previous results indicated a role of loop 4 residues in A-MuLV entry, and the presence of a Pit2-specific loop 4 sequence was found here to confer A-MuLV receptor function upon Pho-4. Moreover, the introduction of a Pit1-specific loop 4 sequence, but not of a Pit2-specific loop 4 sequence, abolished the A-MuLV receptor function of a Pho-4 chimera harboring the Pit1-specific loop 2 sequence. Together, these data suggest that residues in both loop 2 and loop 4 play a role in A-MuLV receptor function. A-MuLV is, however, not dependent on the specific Pit2 loop 2 and Pit2 loop 4 sequences for entry; rather, the role played by loops 2 and 4 in A-MuLV entry can be fulfilled by several different combinations of loop 2 and loop 4 sequences. We predict that the residues in loops 2 and 4, identified in this study as specifying A-MuLV receptor function, are to be found among those not conserved among Pho-4, Pit1, and Pit2.  相似文献   

10.
We have previously reported the unique properties of a receptor for amphotropic murine leukemia viruses (A-MuLVs) expressed on Chinese hamster E36 cells (C.A. Wilson, K.B. Farrell, and M.V. Eiden, J. Virol. 68:7697-7703, 1994). This receptor, HaPiT2 (formerly designated EAR), in contrast to the human form of the A-MuLV receptor (PiT2), functions as a receptor not only for A-MuLVs but also for gibbon ape leukemia virus (GALV). Comparison of the deduced amino acid sequences of the HaPiT2 and PiT2 proteins suggested that differences in the amino acid composition of the extracellular region(s) of the hamster and human proteins account for their functional differences. We substituted extracellular regions of HaPiT2 for those of PiT2 to map the region of the HaPiT2 protein required for GALV receptor function. Only those PiT2-HaPiT2 chimeric receptors containing the fourth and fifth extracellular regions of HaPiT2 functioned as GALV receptors. We have now determined that the substitution of a single amino acid residue, glutamic acid, for the lysine residue at position 522 in the fourth extracellular region of the PiT2 protein is sufficient to render PiT2 functional as a GALV receptor.  相似文献   

11.
The type III sodium-dependent phosphate (NaPi) cotransporter, Pit2, is a receptor for amphotropic murine leukemia virus (A-MuLV) and 10A1 MuLV. In order to determine what is sufficient for Pit2 receptor function, a deletion mutant lacking about the middle half of the protein was made. The mutant supported entry for both viruses, unequivocally narrowing down the identification of the sequence that is sufficient to specify the receptor functions of Pit2 to its N-terminal 182 amino acids and C-terminal 170 amino acids.  相似文献   

12.
Human PiT2 (PiT2) is a multiple-membrane-spanning protein that functions as a type III sodium phosphate cotransporter and as the receptor for amphotropic murine leukemia virus (A-MuLV). Human PiT1 (PiT1), another type III sodium phosphate cotransporter, is a highly related protein that functions as a receptor for gibbon ape leukemia virus but not for A-MuLV. The ability of PiT1 and PiT2 to function as discrete viral receptors with unique properties presumably is reflected in critical residue differences between these two proteins. Early efforts to map the region(s) within PiT2 that is important for virus binding and/or entry relied on infection results obtained with PiT1-PiT2 chimeric cDNAs expressed in Chinese hamster ovary (CHOK1) cells. These attempts to localize the PiT2 virus-binding site were hampered because they were based on infectivity, not binding, assays, and therefore, receptors that bound but failed to facilitate virus entry could not be distinguished from receptors that did not bind virus. Using a more accurate topological model for PiT2 as well as an A-MuLV receptor-binding assay, we have identified extracellular domain one (ECD1) of the human PiT2 receptor as being important for A-MuLV binding and infection.  相似文献   

13.
It is widely recognized that sialic acid (SA) can mediate attachment of influenza virus to the cell surface, and yet the specific receptors that mediate virus entry are not known. For many viruses, a definitive demonstration of receptor function has been achieved when nonpermissive cells are rendered susceptible to infection following transfection of the gene encoding a putative receptor. For influenza virus, such approaches have been confounded by the abundance of SA on mammalian cells so that it has been difficult to identify cell lines that are not susceptible to infection. We examined influenza virus infection of Lec2 Chinese hamster ovary (CHO) cells, a mutant cell line deficient in SA. Lec2 CHO cells were resistant to influenza virus infection, and stable cell lines expressing either DC-SIGN or L-SIGN were generated to assess the potential of each molecule to function as SA-independent receptors for influenza A viruses. Virus strain BJx109 (H3N2) bound to Lec2 CHO cells expressing DC-SIGN or L-SIGN in a Ca(2+)-dependent manner, and transfected cells were susceptible to virus infection. Treatment of Lec2-DC-SIGN and Lec2-L-SIGN cells with mannan, but not bacterial neuraminidase, blocked infection, a finding consistent with SA-independent virus attachment and entry. Moreover, virus strain PR8 (H1N1) bears low levels of mannose-rich glycans and was inefficient at infecting Lec2 CHO cells expressing either DC-SIGN or L-SIGN, whereas other glycosylated H1N1 subtype viruses could infect cells efficiently. Together, these data indicate that human C-type lectins (DC-SIGN and L-SIGN) can mediate attachment and entry of influenza viruses independently of cell surface SA.  相似文献   

14.
The mammalian gammaretroviruses gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B) can use the same receptor, Pit1, to infect human cells. A highly polymorphic nine-residue sequence within Pit1, designated region A, has been proposed as the virus binding site, because mutations in this region abolish Pit1-mediated cellular infection by GALV and FeLV-B. However, a direct correlation between region A mutations deleterious for infection and loss of virus binding has not been established. We report that cells expressing a Pit1 protein harboring mutations in region A that abolish receptor function retain the ability to bind virus, indicating that Pit1 region A is not the virus binding site. Furthermore, we have now identified a second region in Pit1, comprising residues 232 to 260 (region B), that is required for both viral entry and virus binding. Epitope-tagged Pit1 proteins were used to demonstrate that mutations in region B result in improper orientation of Pit1 in the cell membrane. Compensatory mutations in region A can restore proper orientation and full receptor function to these region B mutants. Based on these results, we propose that region A of Pit1 confers competence for viral entry by influencing the topology of the authentic binding site in the membrane and hence its accessibility to a viral envelope protein. Based on glycosylation studies and results obtained by using N- and C-terminal epitope-tagged Pit1, region A and region B mutants, and the transmembrane helices predicted with the PHD PredictProtein algorithm, we propose a new Pit1 topology model.  相似文献   

15.
Gammaretroviruses that enter cells via binding to a surface receptor use one of two fundamental mechanisms. In the first, binding of the virus particle to its cognate receptor is followed by fusion and internalization. The second, less common mechanism requires the addition of an accessory protein in order to achieve fusion and entry into the target cells; this protein is usually the soluble form of the envelope protein containing the receptor-binding domain (RBD). For some viruses, such as amphotropic murine leukemia virus (A-MLV), particles with fusion-defective envelope proteins can enter cells in the presence of their own RBD or that of another viral envelope, regardless of its cognate receptor, suggesting that these viruses share a common entry mechanism. A notable exception is gibbon ape leukemia virus (GALV). Fusion-impaired GALV envelope mutants can be trans-activated for infectivity only by GALV RBDs. Using dually functional GALV/A-MLV receptors, we examined the role of receptor with respect to which RBD could overcome fusion impaired virus entry.  相似文献   

16.
Identification and cloning of the receptors for amphotropic murine leukemia virus (A-MuLV) and gibbon ape leukemia virus (GaLV) have both enabled the determination of the normal function of these virus receptors in cells and initiated experimental examination of how these receptors interact with their respective viruses. GaLV and A-MuLV have distinct host ranges and use different receptors to infect human cells. It was therefore surprising to find that the human GaLV and A-MuLV receptors were not only structurally similar but performed similar cellular functions (B. O'Hara, S. V. Johann, H. P. Klinger, D. G. Blair, H. Rubinson, K. J. Dunn, P. Sass, S. M. Vitek, and T. Robbins, Cell Growth Differ. 1:119-127, 1990; M. van Zeijl, S. V. Johann, E. Closs, J. Cunningham, R. Eddy, T. B. Shows, and B. O'Hara, Proc. Natl. Acad. Sci. USA 91:1168-1172, 1994; M. P. Kavanaugh, D. G. Miller, W. Zhang, W. Law, S. L. Kozak, D. Kabat, and A. D. Miller, Proc. Natl. Acad. Sci. USA 91:7071-7075, 1994; and Z. Olah, C. Lehel, W. B. Anderson, M. V. Eiden, and C. A. Wilson, J. Biol. Chem., in press). We have now determined that the murine retrovirus 10A1 can use both the human GaLV receptor and the human A-MuLV receptor to infect cells. Furthermore, we have cloned and functionally characterized a unique form of the amphotropic receptor homolog expressed in E36 hamster cells. This receptor (EAR) can serve as both a GaLV receptor and an A-MuLV receptor, and it therefore differs from the receptors expressed in human cells, which function exclusively as either GaLV or A-MuLV receptors.  相似文献   

17.
The retroviral vector systems that are in common use for gene therapy are designed to infect cells expressing either of two widely expressed phosphate transporter proteins, Pit1 or Pit2. Subgroup B feline leukemia viruses (FeLV-Bs) use the gibbon ape leukemia virus receptor, Pit1, as a receptor for entry. Our previous studies showed that some chimeric envelope proteins encoding portions of FeLV-B could also enter cells by using a related receptor protein, Pit2, which serves as the amphotropic murine leukemia virus receptor (S. Boomer, M. Eiden, C. C. Burns, and J. Overbaugh, J. Virol. 71:8116--8123, 1997). Here we show that an arginine at position 73 within variable region A (VRA) of the FeLV-B envelope surface unit (SU) is necessary for viral entry into cells via the human Pit2 receptor. However, C-terminal SU sequences have a dominant effect in determining human Pit2 entry, even though this portion of the protein is outside known receptor binding domains. This suggests that a combination of specific VRA sequences and C-terminal sequences may influence interactions between FeLV-B SU and the human Pit2 receptor. Binding studies suggest that the C-terminal sequences may affect a postbinding step in viral entry via the Pit2 receptor, although in all cases, binding of FeLV-B SU to human Pit2 was weak. In contrast, neither the arginine 73 nor specific C-terminal sequences are required for efficient binding or infection with Pit1. Taken together, these data suggest that different residues in SU may interact with these two receptors. The specific FeLV-Bs described here, which can enter cells using either human Pit receptor, may be useful as envelope pseudotypes for viruses used in gene therapy.  相似文献   

18.
19.
Xu W  Eiden MV 《Journal of virology》2011,85(7):3498-3506
BHK cells remain resistant to xenotropic murine retrovirus-related virus (XMRV) or gibbon ape leukemia virus (GALV) infection, even when their respective receptors, Xpr1 or PiT1, are expressed. We set out to determine the stage at which viral infection is blocked and whether this block is mediated by a dominant-negative factor or the absence of a requisite ancillary factor. BHK cells bind neither XMRV nor GALV envelope proteins. BHK cells expressing the appropriate receptors bind XMRV or GALV envelope proteins. BHK cells can be infected by NZB-XMV(New Zealand Black mouse xenotropic murine virus)-enveloped vectors, expressing an envelope derived from a xenotropic retrovirus that, like XMRV, employs Xpr1 as a receptor, and also by vectors bearing the envelope of 10A1 murine leukemia virus (MLV), a murine retrovirus that can use PiT1 as a receptor. The retroviral vectors used in these analyses differ solely in their viral envelope proteins, suggesting that the block to XMRV and GALV infection is mediated at the level of envelope-receptor interactions. N-linked glycosylation of the receptors was not found to mediate resistance of receptor-expressing BHK cells to GALV or XMRV, as shown by tunicamycin treatment and mutation of the specific glycosylation site of the PiT1 receptor. Hybrid cells produced by fusing BHKXpr1 or BHKPiT1 to XMRV- or GALV-resistant cells, respectively, can mediate efficient XMRV or GALV infection. These findings indicate that BHK cells lack a factor that is required for infection by primate xenotropic viruses. This factor is not required for viruses that use the same receptors but were directly isolated from mice.  相似文献   

20.
Pit1, the receptor for gibbon ape leukemia virus (GALV), is proposed to be an integral membrane protein with five extracellular loops. Chimeras made between Pit1 homologs differing in permissivity for infection and between Pit1 and the related protein Pit2 have shown that the fourth extracellular loop plays a critical role in infection. However, further elucidation of the roles of the extracellular loops in infection is hampered by the high level of sequence similarity among these proteins. The sodium-dependent phosphate transporter, Pho-4, from the filamentous fungus Neurospora crassa is distantly related to Pit1 and -2, showing an amino acid identity of only 35% to Pit1 in the putative extracellular loops. We show here that Pho-4 itself does not function as a receptor for GALV. Introduction of 12 Pit1-specific amino acid residues in the putative fourth extracellular loop of Pho-4 resulted in a functional GALV receptor. Therefore, the presence of a Pit1 loop 4-specific sequence is sufficient to confer receptor function for the mammalian retrovirus GALV on the fungal phosphate transporter Pho-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号