首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNA transcriptome profiles during swine skeletal muscle development   总被引:4,自引:0,他引:4  

Background

Dietary polyunsaturated fatty acids (PUFA), in particular the long chain marine fatty acids docosahexaenoic (DHA) and eicosapentaenoic (EPA), are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J murine small intestine using whole genome microarrays and functionally characterized the most prominent biological process.

Results

The main biological process affected based on gene expression analysis was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR, and -in a second animal experiment- intestinal fatty acid oxidation measurements confirmed significant gene expression differences and showed in a dose-dependent manner significant changes at biological functional level. Furthermore, no major changes in the expression of lipid metabolism genes were observed in the colon.

Conclusion

We show that marine n-3 fatty acids regulate small intestinal gene expression and increase fatty acid oxidation. Since this organ contributes significantly to whole organism energy use, this effect on the small intestine may well contribute to the beneficial physiological effects of marine PUFAs under conditions that will normally lead to development of obesity, insulin resistance and diabetes.  相似文献   

2.
At present, there are no means for creation of relevant animal models of human mitochondrial DNA (mtDNA)based diseases in a directed fashion. As an initial step towards this end, we have developed a microinjection technique for transfer of isolated, viable mitochondria between two mouse species. Previously, we reported detection, by nested PCR with speciesspecific primer sets, of Mus spretus mtDNA in Mus musculus domesticus blastocysts following zygote microinjection and culture. We now report the production of transmitochondrial founder mice, and germline transmission of the heteroplasmic state in a maternal lineage. Heteroplasmic mice produced by this technique will be useful in the study of mitochondrial dynamics and may hasten the creation of animal models of human mtDNAbased diseases.  相似文献   

3.
Meng J  Adkin CF  Xu SW  Muntoni F  Morgan JE 《PloS one》2011,6(3):e17454

Background

Stem cell transplantation is a promising potential therapy for muscular dystrophies, but for this purpose, the cells need to be systemically-deliverable, give rise to many muscle fibres and functionally reconstitute the satellite cell niche in the majority of the patient''s skeletal muscles. Human skeletal muscle-derived pericytes have been shown to form muscle fibres after intra-arterial transplantation in dystrophin-deficient host mice. Our aim was to replicate and extend these promising findings.

Methodology/Principal Findings

Isolation and maintenance of human muscle derived cells (mdcs) was performed as published for human pericytes. Mdscs were characterized by immunostaining, flow cytometry and RT-PCR; also, their ability to differentiate into myotubes in vitro and into muscle fibres in vivo was assayed. Despite minor differences between human mdcs and pericytes, mdscs contributed to muscle regeneration after intra-muscular injection in mdx nu/nu mice, the CD56+ sub-population being especially myogenic. However, in contrast to human pericytes delivered intra-arterially in mdx SCID hosts, mdscs did not contribute to muscle regeneration after systemic delivery in mdx nu/nu hosts.

Conclusions/Significance

Our data complement and extend previous findings on human skeletal muscle-derived stem cells, and clearly indicate that further work is necessary to prepare pure cell populations from skeletal muscle that maintain their phenotype in culture and make a robust contribution to skeletal muscle regeneration after systemic delivery in dystrophic mouse models. Small differences in protocols, animal models or outcome measurements may be the reason for differences between our findings and previous data, but nonetheless underline the need for more detailed studies on muscle-derived stem cells and independent replication of results before use of such cells in clinical trials.  相似文献   

4.
Introduction: Distinct subtypes of contractile fibres are highly diverse in their proteomic profile and greatly adaptable to physiological or pathological challenges. A striking biochemical feature of heterogeneous skeletal muscle tissues is the presence of a considerable number of extremely large protein species, which often present a bioanalytical challenge for the systematic separation and identification of muscle proteomes during large-scale screening surveys.

Areas covered: This review outlines the proteomic characterization of skeletal muscles with a special focus on giant proteins of the sarcomere, the cytoskeleton and the sarcoplasmic reticulum. This includes an overview of the involvement of large muscle proteins, such as titin, nebulin, obscurin, plectin, dystrophin and the ryanodine receptor calcium release channel, during normal muscle functioning, swift adaptations to changed physiological demands and changes in relation to pathobiochemical insults.

Expert commentary: The proteomic screening and characterization of total muscle extracts and various subcellular fractions has confirmed the critical role of large skeletal muscle proteins in the regulation of ion homeostasis, the maintenance of contraction-relaxation cycles and fibre elasticity, and the stabilisation of supramolecular complexes of the muscle periphery and cytoskeletal networks of contractile fibres. These findings will be helpful for the future functional systems analysis of giant muscle proteins.  相似文献   


5.
Streptozotocin (STZ) is used extensively to induce pancreatic -cell death and ultimately diabetes mellitus in animal models. However, the direct effects of STZ on muscle are largely unknown. To delineate the effects of STZ from the effects of hypoinsulinemia/hyperglycemia, we injected young rats with 1) saline (control), 2) STZ (120 mg/kg) or 3) STZ and insulin (STZ-INS; to maintain euglycemia). STZ rats demonstrated significantly elevated blood glucose throughout the 48-h protocol, while control and STZ-INS rats were euglycemic. Body mass increased in control (13 ± 4 g), decreased by 19 ± 2 g in STZ and remained unchanged in STZ-INS rats (–0.3 ± 2 g). Cross-sectional areas of gastrocnemius muscle fibers were smaller in STZ vs. control (1,480 ± 149 vs. 1,870 ± 40 µm2, respectively; P < 0.05) and insulin treatment did not rescue this defect (STZ-INS: 1,476 ± 143 µm2). Western blot analysis revealed a detectable increase in ubiquitinated proteins in the STZ skeletal muscles compared with control and STZ-INS. To further define the effects of STZ on skeletal muscle, independent of hyperglycemia, myoblasts were exposed to varying doses of STZ (0.25–3.0mg/ml) in vitro. Both acute and chronic exposures of STZ significantly impaired proliferative capacity in a dose-dependent manner. Within STZ-treated myoblasts, increased reactive oxygen species was associated with significant G2/M phase cell-cycle arrest. Taken together, our findings show that the effects of STZ are not -cell specific and reveal that STZ should not be used for studies examining diabetic myopathy. satellite cell; diabetes; diabetic model; type 1 diabetes mellitus; cell cycle; proliferation; hypertrophy  相似文献   

6.

Background

Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.5 years old) and middle-aged (7 years old) pigs as models to survey genome-wide DNA methylation in the longissimus dorsi muscle using a methylated DNA immunoprecipitation sequencing approach.

Results

We observed a tendency toward a global loss of DNA methylation in the gene-body region of the skeletal muscle of the middle-aged pigs compared with the young group. We determined the genome-wide gene expression pattern in the longissimus dorsi muscle using microarray analysis and performed a correlation analysis using DMR (differentially methylated region)-mRNA pairs, and we found a significant negative correlation between the changes in methylation levels within gene bodies and gene expression. Furthermore, we identified numerous genes that show age-related methylation changes that are potentially involved in the aging process. The methylation status of these genes was confirmed using bisulfite sequencing PCR. The genes that exhibited a hypomethylated gene body in middle-aged pigs were over-represented in various proteolysis and protein catabolic processes, suggesting an important role for these genes in age-related muscle atrophy. In addition, genes associated with tumorigenesis exhibited aged-related differences in methylation and expression levels, suggesting an increased risk of disease associated with increased age.

Conclusions

This study provides a comprehensive analysis of genome-wide DNA methylation patterns in aging pig skeletal muscle. Our findings will serve as a valuable resource in aging studies, promoting the pig as a model organism for human aging research and accelerating the development of comparative animal models in aging research.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-653) contains supplementary material, which is available to authorized users.  相似文献   

7.
Deficiency of -sarcoglycan(-SG), a component of the dystrophin-glycoprotein complex, causescardiomyopathy and skeletal muscle dystrophy in Bio14.6 hamsters. Usingcultured myotubes prepared from skeletal muscle of normal and Bio14.6hamsters (J2N-k strain), we investigated the possibility that the-SG deficiency may lead to alterations in ionic conductances, whichmay ultimately lead to myocyte damage. In cell-attached patches (withBa2+ as the charge carrier), an ~20-pS channel wasobserved in both control and Bio14.6 myotubes. This channel is alsopermeable to K+ and Na+ but not toCl. Channel activity was increased by pressure-inducedstretch and was reduced by GdCl3 (>5 µM). The basal openprobability of this channel was fourfold higher in Bio14.6 myotubes,with longer open and shorter closed times. This was mimicked bydepolymerization of the actin cytoskeleton. In intact Bio14.6 myotubes,the unidirectional basal Ca2+ influx was enhanced comparedwith control. This Ca2+ influx was sensitive toGdCl3, signifying that stretch-activated cation channelsmay have been responsible for Ca2+ influx in Bio14.6hamster myotubes. These results suggest a possible mechanism by whichcell damage might occur in this animal model of muscular dystrophy.

  相似文献   

8.
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

9.
Summary Caveolins are small integral membrane proteins with a vital role in the formation and function of caveolae. In this review, the role of caveolin-3, a predominantly muscle-specific member of the caveolin family, will be examined. We speculate that insights into the mechanism of caveolae formation may give clues into the formation of another plasma membrane domain, the transverse-tubule system of muscle cells and propose a role for cholesterol-enriched lipid rafts in this process. In addition, we review recent findings regarding caveolin-3 in differentiated muscle cells and, particularly, in dystrophic muscle.Abbreviations DIG detergent-insoluble glycosphingolipid-enriched complex - DPC dystrophin protein complex - eNOS/nNOS endothelial/neuronal nitric oxide synthase - pTT precursor transverse tubule - T-tubule transverse tubule  相似文献   

10.
TNF-alpha is a mitogen in skeletal muscle   总被引:3,自引:0,他引:3  
Emerging evidence suggests that tumor necrosis factor (TNF)- plays a role in muscle repair. To determine whether TNF- modulates satellite cell proliferation, the current study evaluated TNF- effects on DNA synthesis in primary myoblasts and on satellite cell activation in adult mouse muscle. Exposure to recombinant TNF- increased total DNA content in rat primary myoblasts dose-dependently over a 24-h period and increased the number of primary myoblasts incorporating 5-bromo-2'-deoxyuridine (BrdU) during a 30-min pulse labeling. Systemic injection of TNF- stimulated BrdU incorporation by satellite cells in muscles of adult mice, whereas no BrdU was incorporated by satellite cells in control mice. TNF- stimulated serum response factor (SRF) binding to the serum response element (SRE) present in the c-fos gene promoter and stimulated reporter gene expression controlled by the same element. Our data suggest that TNF- activates satellite cells to enter the cell cycle and accelerates G1-to-S phase transition, and these actions may involve activation of early response genes via SRF. cytokine; cell cycle; satellite cells; serum response factor; c-fos  相似文献   

11.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

12.
Summary. The aminoacyl-imidazole dipeptides carnosine (-alanyl-L-histidine) and anserine (-alanyl-1-methyl-histidine) are present in relatively high concentrations in excitable tissues, such as muscle and nervous tissue. In the present study we describe the existence of a marked sexual dimorphism of carnosine and anserine in skeletal muscles of CD1 mice. In adult animals the concentrations of anserine were higher than those of carnosine in all skeletal muscles studied, and the content of aminoacyl-imidazole dipeptides was remarkably higher in males than in females. Postnatal ontogenic studies and hormonal manipulations indicated that carnosine synthesis was up-regulated by testosterone whereas anserine synthesis increased with age. Regional variations in the concentrations of the dipeptides were observed in both sexes, skeletal muscles from hind legs having higher amounts of carnosine and anserine than those present in fore legs or in the pectoral region. The concentration of L-lysine in skeletal muscles also showed regional variations and a sexual dimorphic pattern with females having higher levels than males in all muscles studied. The results suggest that these differences may be related with the anabolic action of androgens on skeletal muscle.  相似文献   

13.
14.
Kent-Braun, J. A., A. V. Ng, M. Castro, M. W. Weiner, D. Gelinas, G. A. Dudley, and R. G. Miller. Strength, skeletal musclecomposition and enzyme activity in multiple sclerosis. J. Appl. Physiol. 83(6):1998-2004, 1997.This study examined functional, biochemical, andmorphological characteristics of skeletal muscle in nine multiplesclerosis (MS) patients and eight healthy controls in an effort toascertain whether intramuscular adaptations could account for excessivefatigue in this disease. Analyses of biopsies of the tibialis anteriormuscle showed that there were fewer type I fibers (66 ± 6 vs. 76 ± 6%), and that fibers of all types were smaller (average26%) and had lower succinic dehydrogenase (SDH; average40%) and SDH/-glycerol-phosphate dehydrogenase (GPDH) butnot GPDH activities in MS vs. control subjects, suggesting that musclein this disease is smaller and relies more on anaerobic thanaerobic-oxidative energy supply than does muscle of healthyindividuals. Maximal voluntary isometric force fordorsiflexion was associated with both average fiber cross-sectionalarea (r = 0.71, P = 0.005) and muscle fat-free cross-sectional area by magnetic resonance imaging(r = 0.80, P < 0.001). Physical activity,assessed by accelerometer, was associated with average fiber SDH/GPDH(r = 0.78, P = 0.008). There was a tendency forsymptomatic fatigue to be inversely associated with average fiber SDHactivity (r = 0.57,P = 0.068). The results of thisstudy suggest that the inherent characteristics of skeletal musclefibers per se and of skeletal muscle as a whole are altered in thedirection of disuse in MS. They also suggest that changes in skeletalmuscle in MS may significantly affect function.

  相似文献   

15.
Synopsis A new device is described for improving the accuracy of measuring the thickness of cryostat sections by the focusing technique in the light microscope. The necessity of such measurements is demonstrated by the great variation (range 2.55 m–11.93 m) in the thickness of serial cross-sections of frozen muscle biopsies from 12 healthy men. The final dehydration of the sections was found to reduce the thickness of fresh sections by 47%. However, dehydration caused the cross-sectional area to be reduced by only 2.8%.  相似文献   

16.
Taurine, a sulfur-containing β-amino acid, is highly contained in heart and skeletal muscle. Taurine has a variety of biological actions, such as ion movement, calcium handling and cytoprotection in the cardiac and skeletal muscles. Meanwhile, taurine deficiency leads various pathologies, including dilated cardiomyopathy, in cat and fox. However, the essential role of taurine depletion on pathogenesis has not been fully clarified. To address the physiological role of taurine in mammalian tissues, taurine transporter-(TauT-) knockout models were recently generated. TauTKO mice exhibited loss of body weight, abnormal cardiac function and the reduced exercise capacity with tissue taurine depletion. In this chapter, we summarize pathological profile and histological feature of heart and skeletal muscle in TauTKO mice.  相似文献   

17.
Summary K currents and K-current fluctuations were recorded in inwardly rectifying K channels of frog skeletal muscle under voltage-clamp conditions. External application of 0.2 to 10mm Cs reduces the inward mean K current but produces a distinct increase of the spectral density of K-current fluctuations. The additional fluctuations arise from the random blocking by Cs ions. From the variance of current fluctuations, the steady-state current and the probability of the open unblocked channel an effective single-channel conductance * was calculated. * strongly depends on the external Cs concentration (7.8 pS at 0.2mm Cs, 2.1 pS at 10mm Cs). This dependence is interpreted in terms of a two-step blocking process: (1) a fast exchange of Cs ions between the external solution and a first binding site inside the channel which leads to the Cs-modulated effective single-channel conductance, and (2) a slow Cs binding to a second site deeper in the channel which produces the observed current fluctuations. With this hypothesis we obtained a real single-channel conductance of 10 pS and a real density ofn4 inwardly rectifying channels per m2 of muscle surface area.  相似文献   

18.
Summary A highly sensitive sandwich ELISA for parvalbumin (PA), based on a fluorometric detection system, was developed. This assay detected PA concentrations as low as 20 pg/ml (2 pg per assay) and was used for measuring PA contents in fragments of single muscle fibers isolated from freeze-dried 100–150 m thick cross sections. The fibers were typed according to their histo-chemically assessed mATPase in parallel cross sections. Type I fibers from rabbit tibialis anterior (TA) and vastus lateralis (VL) muscles contained extremely low PA concentrations (2–5 g/g w.wt.). Type IIA fibers displayed slightly higher values with mean values of 17 and 29 g/g w.wt. (range 5–65) in TA and VL, respectively. Much higher PA concentrations were found in type IIB fibers with wide ranges from 75–1150 g/g w.wt. in TA and 440–1370 g/g w.wt. in VL. Whereas the IIB fibers of the TA displayed a continuum, two subgroups were distinguishable according to their PA contents (means of 590 and 1230 g/g w.wt.) in VL. Possibly, the population with the lower PA content which was histochemically defined as type IIB in the present study, corresponds to fiber type IID. The finding that PA is predominantly present in type IIB fibers was also confirmed by the parallel decay of PA and type IIB fibers during chronic low-frequency stimulation. The use of freeze substitution, or alternatively, of freeze-drying, made it possible to demonstrate PA immunohistochemically without artifacts and to evaluate the staining intensity by microphotometry. Performing measurements on the same fibers with the two methods, it was possible to establish a relationship between immunohistochemical staining intensity and PA concentration. This correlation can be used to assess PA contents by evaluating immunohistochemical staining intensities in comparative measurements within the same section.  相似文献   

19.
Summary The activity of -glycerophosphate shuttle in homogenate and in a reconstructed system (isolated mitochondria and cytoplasm) from rat skeletal muscle is presented. The influence of some inhibitors of mitochondria) -glycerosphate dehydrogenase on the activity -glycerophosphate shuttle is demonstrated. The possible operativity of -glycerophosphate shuttle in skeletal muscle in vivo is discussed.Abbreviations used CCCP carbonyl cyanide mchlorophenyl hydrazone - DHAP dihydroxyacetone phosphate - F-1,6 P2 fructose 1,6 diphosphate - -GP -glycerophosphate - GAP glyceraldehyde 3-phosphate - PEP phosphoenolpyruvate - 3-PG 3-phosphoglycerate - PYR pyruvate - PAL-CoA palmitoyl CoA - MIT mitochondria - CYT cytoplasm - PAL-CARN palmitoyl carnitine  相似文献   

20.
In this study, the in vivo effects of insulin and chronic treatment with bis(maltolato)oxovanadium (IV) (BMOV) on protein kinase B (PKB) activity were examined in the liver and skeletal muscle from two animal models of diabetes, the STZdiabetic Wistar rat and the fatty Zucker rat. Animals were treated with BMOV in the drinking water (0.75–1 mg/ml) for 3 (or 8) weeks and sacrificed with or without insulin injection. Insulin (5 U/kg, i.v.) increased PKB activity more than 10fold and PKB activity more than 3fold in both animal models. Despite the development of insulin resistance, insulininduced activation of PKB was not impaired in the STZdiabetic rats up to 9 weeks of diabetes, excluding a role for PKB in the development of insulin resistance in type 1 diabetes. Insulin-induced PKB activity was markedly reduced in the skeletal muscle of fatty Zucker rats as compared to lean littermates (fatty: 7fold vs. lean: 14fold). In contrast, a significant increase in insulinstimulated PKBa activity was observed in the liver of fatty Zucker rats (fatty: 15.7fold vs. lean: 7.6fold). Chronic treatment with BMOV normalized plasma glucose levels in STZdiabetic rats and decreased plasma insulin levels in fatty Zucker rats but did not have any effect on basal or insulininduced PKB and PKB activities. In conclusion (i) in STZdiabetic rats PKB activity was normal up to 9 weeks of diabetes; (ii) in fatty Zucker rats insulininduced activation of PKB (but not PKB) was markedly altered in both tissues; (iii) changes in PKB activity were tissue specific; (iv) the glucoregulatory effects of BMOV were independent of PKB activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号