首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During spring and autumn migrations, 468 fecal samples from 57 different species of migratory birds were collected in Sweden. In total, Yersinia spp. were isolated from 12.8% of collected samples. The most commonly found species was Yersinia enterocolitica, which was isolated from 5.6% of all collected samples, followed by Y. intermedia (3.8%), Y. frederiksenii (3.0%), Y. kristensenii (0.9%), Y. pseudotuberculosis (0.6%), and Y. rohdei (0.4%). The pathogenic, virF-positive Y. pseudotuberculosis strains were recovered from three thrushes. These strains belonged to the same bioserotype, 1/O:2, but had two different profiles as determined by pulsed-field gel electrophoresis with NotI and SpeI enzymes. In addition, 10 Y. enterocolitica strains, all from barnacle geese, belonged to bioserotype 3/O:3, which is associated with human disease. Two of the strains were pathogenic, carrying the virF gene on their plasmids. All pathogenic Y. pseudotuberculosis and Y. enterocolitica strains were recovered during the spring, and as the birds were caught during active migration they likely became infected at an earlier stage of the migration, thus potentially transporting these bacterial pathogens over long geographical distances.  相似文献   

2.
Approximately 550 to 600 yersiniosis patients are reported annually in Sweden. Although pigs are thought to be the main reservoir of food-borne pathogenic Yersinia enterocolitica, the role of pork meat as a vehicle for transmission to humans is still unclear. Pork meat collected from refrigerators and local shops frequented by yersiniosis patients (n = 48) were examined for the presence of pathogenic Yersinia spp. A combined culture and PCR method was used for detection, and a multiplex PCR was developed and evaluated as a tool for efficient identification of pathogenic food and patient isolates. The results obtained with the multiplex PCR were compared to phenotypic test results and confirmed by pulsed-field gel electrophoresis (PFGE). In all, 118 pork products (91 raw and 27 ready-to-eat) were collected. Pathogenic Yersinia spp. were detected by PCR in 10% (9 of 91) of the raw pork samples (loin of pork, fillet of pork, pork chop, ham, and minced meat) but in none of the ready-to-eat products. Isolates of Y. enterocolitica bioserotype 4/O:3 were recovered from six of the PCR-positive raw pork samples; all harbored the virulence plasmid. All isolates were recovered from food collected in shops and, thus, none were from the patients' home. When subjected to PFGE, the six isolates displayed four different NotI profiles. The same four NotI profiles were also present among isolates recovered from the yersiniosis patients. The application of a multiplex PCR was shown to be an efficient tool for identification of pathogenic Y. enterocolitica isolates in naturally contaminated raw pork.  相似文献   

3.
PCR-based assays were developed for the detection of plasmid- and chromosome-borne virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis, to investigate the distribution of these genes in isolates from various sources. The results of PCR genotyping, based on 5 virulence-associated genes of 140 strains of Y. enterocolitica, were compared to phenotypic tests, such as biotyping and serotyping, and to virulence plasmid-associated properties such as calcium-dependent growth at 37°C and Congo red uptake. The specificity of the PCR results was validated by hybridization. Genotyping data correlated well with biotype data, and most biotypes resulted in (nearly) homogeneous genotypes for the chromosomal virulence genes (ystA, ystB, and ail); however, plasmid-borne genes (yadA and virF) were detected with variable efficiency, due to heterogeneity within the bacterial population for the presence of the virulence plasmid. Of the virulence genes, only ystB was present in biotype 1A; however, within this biotype, pathogenic and apathogenic isolates could not be distinguished based on the detection of virulence genes. Forty Y. pseudotuberculosis isolates were tested by PCR for the presence of inv, yadA, and lcrF. All isolates were inv positive, and 88% of the isolates contained the virulence plasmid genes yadA and lcrF. In conclusion, this study shows that genotyping of Yersinia spp., based on both chromosome- and plasmid-borne virulence genes, is feasible and informative and can provide a rapid and reliable genotypic characterization of field isolates.  相似文献   

4.
In this study, 231 strains of Yersinia enterocolitica, 25 strains of Y. intermedia, and 10 strains of Y. bercovieri from human and porcine sources (including reference strains) were analyzed using amplified fragment length polymorphism (AFLP), a whole-genome fingerprinting method for subtyping bacterial isolates. AFLP typing distinguished the different Yersinia species examined. Representatives of Y. enterocolitica biotypes 1A, 1B, 2, 3, and 4 belonged to biotype-related AFLP clusters and were clearly distinguished from each other. Y. enterocolitica biotypes 2, 3, and 4 appeared to be more closely related to each other (83% similarity) than to biotypes 1A (11%) and 1B (47%). Biotype 1A strains exhibited the greatest genetic heterogeneity of the biotypes studied. The biotype 1A genotypes were distributed among four major clusters, each containing strains from both human and porcine sources, confirming the zoonotic potential of this organism. The AFLP technique is a valuable genotypic method for identification and typing of Y. enterocolitica and other Yersinia spp.  相似文献   

5.
We have developed a rapid procedure for the detection of virulent Yersinia enterocolitica in ground pork by combining a previously described PCR with fluorescent dye technologies. The detection method, known as the fluorogenic 5′ nuclease assay (TaqMan), produces results by measuring the fluorescence produced during PCR amplification, requiring no post-PCR processing. The specificity of the chromosomal yst gene-based assay was tested with 28 bacterial isolates that included 7 pathogenic and 7 nonpathogenic serotypes of Y. enterocolitica, other species of Yersinia (Y. aldovae, Y. pseudotuberculosis, Y. mollaretti, Y. intermedia, Y. bercovieri, Y. ruckeri, Y. frederiksenii, and Y. kristensenii), and other enteric bacteria (Escherichia, Salmonella, Citrobacter, and Flavobacterium). The assay was 100% specific in identifying the pathogenic strains of Y. enterocolitica. The sensitivity of the assay was found to be ≥102 CFU/ml in pure cultures and ≥103 CFU/g in spiked ground pork samples. Results of the assay with food enrichments prespiked with Y. enterocolitica serotypes O:3 and O:9 were comparable to standard culture results. Of the 100 field samples (ground pork) tested, 35 were positive for virulent Y. enterocolitica with both 5′ nuclease assay and conventional virulence tests. After overnight enrichment the entire assay, including DNA extraction, amplification, and detection, could be completed within 5 h.  相似文献   

6.
From 1981 to 1991, 37,666 human, animal, food and environmental samples were cultured for Yersinia pseudotuberculosis using direct plating methods and/or cold enhancement techniques. Despite an intensive surveillance and adequate culture methods, Y. pseudotuberculosis was isolated from stools of 0.05% (5/9,720) of patients with acute enteritis, and alimentary tracts of 0.1% (10/6,849) of apparently healthy animals. No Y. pseudotuberculosis strains were recovered from stools of 4,726 healthy controls nor from the appendices (656), mesenteric lymph nodes (84), and stools (421) of 656 patients operated for suspected appendicitis. Of the 10,842 food and 4,368 environmental samples, none yielded positive cultures for Y. pseudotuberculosis.  相似文献   

7.
Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (104 cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.  相似文献   

8.
Yersinia enterocolitica is considered an important food-borne pathogen impacting the pork production and processing industry in the United States. Since this bacterium is a commensal of swine, the primary goal of this study was to determine the prevalence of pathogenic Y. enterocolitica in pigs in the United Sates using feces as the sample source. A total of 2,793 fecal samples were tested for its presence in swine. Fecal samples were collected from late finisher pigs from 77 production sites in the 15 eastern and midwestern pork-producing states over a period of 27 weeks (6 September 2000 to 20 March 2001). The prevalence of ail-positive Y. enterocolitica was determined in samples using both a fluorogenic 5′ nuclease PCR assay and a culture method. The mean prevalence was 13.10% (366 of 2,793 fecal samples tested) when both PCR- and culture-positive results were combined. Forty-one of 77 premises (53.25%) contained at least one fecal sample positive for the ail sequence. The PCR assay indicated a contamination rate of 12.35% (345/2,793) compared to 4.08% (114/2,793) by the culture method. Of the 345 PCR-positive samples, 252 were culture negative, while of the 114 culture-positive samples, 21 were PCR negative. Among 77 premises, the PCR assay revealed a significantly (P < 0.05) higher percentage (46.75%, n = 36 sites) of samples positive for the pathogen (ail sequence) than the culture method (22.08%, n = 17 sites). Thus, higher sensitivity, with respect to number of samples and sites identified as positive for the PCR method compared with the culture method for detecting pathogenic Y. enterocolitica, was demonstrated in this study. The results support the hypothesis that swine are a reservoir for Y. enterocolitica strains potentially pathogenic for humans.  相似文献   

9.
The distribution of Yersinia enterocolitica in slaughtered pigs in China was studied. A total of 8,773 samples were collected and examined from different pig abattoirs in 11 provinces from 2009 to 2011. Of these, 4,495 were oral-pharyngeal swab (tonsils) samples from pigs, 1,239 were from intestinal contents, and 3,039 were feces samples from abattoirs or local pigpens. The data showed that 1,132 strains were obtained, from which the isolation rate for Yersinia enterocolitica was 19.53% (878/4,495) from the tonsil samples, 7.51% (93/1,239) from intestinal contents, and 5.30% (161/3,039) from feces. Of the 850 pathogenic Yersinia strains, except for three of bioserotype 2/O:9 and three of bioserotype 4/O:3, most (844/850) were of bioserotype 3/O:3. Interestingly, pathogenic Y. enterocolitica accounted for the majority of the isolated strains from most provinces (85.17% to 100%), whereas from Heilongjiang, 96.52% (111/115) were classified as nonpathogenic biotype 1A with various serotypes, and only 3.48% of the strains (4/115) were pathogenic 3/O:3. All of the pathogenic strains were analyzed using pulsed-field gel electrophoresis (PFGE), and 49 patterns were obtained for the O:3 pathogenic strains; most of them were K6GN11C30021 (53.13%: 450/847) and K6GN11C30012 (21.37%: 181/847). Several strains from diarrhea patient samples revealed PFGE patterns identical to that from samples of local pigs, suggesting a possible link between porcine isolates and human infection. The results above suggested that Yersinia enterocolitica in slaughtered pigs from Chinese abattoirs was characterized by region-specific PFGE patterns and confirmed that strains isolated from pigs are closely related to those from human infections.  相似文献   

10.
Yersinia enterocolitica are Gram-negative pathogens and known as important causes of foodborne infections. Rapid and reliable identification of strains of the species Y. enterocolitica within the genus Yersinia and the differentiation of the pathogenic from the non-pathogenic biotypes has become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid species identification and subtyping of Y. enterocolitica. To this end, we developed a reference MS database library including 19 Y. enterocolitica (non-pathogenic biotype 1A and pathogenic biotypes 2 and 4) as well as 24 non-Y. enterocolitica strains, belonging to eleven different other Yersinia spp. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2000 to 30,000 Da). Species-specific and biotype-specific biomarker protein mass patterns were determined for Y. enterocolitica. The defined biomarker mass patterns (SARAMIS SuperSpectrum™) were validated using 117 strains from various Y. enterocolitica bioserotypes in a blind-test. All strains were correctly identified and for all strains the mass spectrometry-based identification scheme yielded identical results compared to a characterization by a combination of biotyping and serotyping. Our study demonstrates that MALDI-TOF-MS is a reliable and powerful tool for the rapid identification of Y. enterocolitica strains to the species level and allows subtyping of strains to the biotype level.  相似文献   

11.
Yersiniosis is strongly associated with the consumption of pork contaminated with enteropathogenic Yersinia enterocolitica, which is harbored by domestic pigs without showing clinical signs of disease. In contrast to data on Y. enterocolitica isolated from conventionally reared swine, investigations into the occurrence of Y. enterocolitica in wild boars in Germany are rare. The objectives of the study were to get knowledge about these bacteria and their occurrence in wild boars hunted in northern Germany by isolation of the bacteria from the tonsils, identification of the bioserotypes, determination of selected virulence factors, macrorestriction analysis, multilocus sequence typing (MLST), and testing of antimicrobial susceptibility. Altogether, tonsils from 17.1% of 111 tested wild boars were positive for Y. enterocolitica by culture methods. All but two isolates belonged to biotype (BT) 1A, with the majority of isolates bearing a ystB nucleotide sequence which was revealed to have 85% identity to internal regions of Y. enterocolitica heat-stable enterotoxin type B genes. The remaining Y. enterocolitica isolates were identified to be BT 1B and did not carry the virulence plasmid. However, two BT 1A isolates carried the ail gene. Macrorestriction analysis and results from MLST showed a high degree of genetic diversity of the isolates, although the region where the samples were taken was restricted to Lower Saxony, Germany, and wild boars were shot during one hunting season. In conclusion, most Y. enterocolitica isolates from wild boars investigated in this study belonged to biotype 1A. Enteropathogenic Y. enterocolitica bioserotypes 4/O:3 and 2/O:9, usually harbored by commercially raised pigs in Europe, could not be identified.  相似文献   

12.
The complete nucleotide sequence and gene organization of the three virulence plasmids from Yersinia pestis KIM5 were determined. Plasmid pPCP1 (9,610 bp) has a GC content of 45.3% and encodes two previously known virulence factors, an associated protein, and a single copy of IS100. Plasmid pCD1 (70,504 bp) has a GC content of 44.8%. It is known to encode a number of essential virulence determinants, regulatory functions, and a multiprotein secretory system comprising the low-calcium response stimulation that is shared with the other two Yersinia species pathogenic for humans (Y. pseudotuberculosis and Y. enterocolitica). A new pseudogene, which occurs as an intact gene in the Y. enterocolitica and Y. pseudotuberculosis-derived analogues, was found in pCD1. It corresponds to that encoding the lipoprotein YlpA. Several intact and partial insertion sequences and/or transposons were also found in pCD1, as well as six putative structural genes with high homology to proteins of unknown function in other yersiniae. The sequences of the genes involved in the replication of pCD1 are highly homologous to those of the cognate plasmids in Y. pseudotuberculosis and Y. enterocolitica, but their localization within the plasmid differs markedly from those of the latter. Plasmid pMT1 (100,984 bp) has a GC content of 50.2%. It possesses two copies of IS100, which are located 25 kb apart and in opposite orientations. Adjacent to one of these IS100 inserts is a partial copy of IS285. A single copy of an IS200-like element (recently named IS1541) was also located in pMT1. In addition to 5 previously described genes, such as murine toxin, capsule antigen, capsule anchoring protein, etc., 30 homologues to genes of several bacterial species were found in this plasmid, and another 44 open reading frames without homology to any known or hypothetical protein in the databases were predicted.  相似文献   

13.
The transmission of Yersinia pseudotuberculosis in the pork production chain was followed from farm to slaughterhouse by studying the same 364 pigs from different production systems at farm and slaughterhouse levels. In all, 1,785 samples were collected, and the isolated Y. pseudotuberculosis strains were analyzed by pulsed-field gel electrophoresis. The results of microbial sampling were combined with data from an on-farm observation and questionnaire study to elucidate the associations between farm factors and the prevalence of Y. pseudotuberculosis. Following the same pigs in the production chain from farm to slaughterhouse, we were able to show similar Y. pseudotuberculosis genotypes in live animals, pluck sets (containing tongue, tonsils, esophagus, trachea, heart, lungs, diaphragm, liver, and kidneys), and carcasses and to conclude that Y. pseudotuberculosis contamination originates from the farms, is transported to slaughterhouses with pigs, and transfers to pluck sets and carcasses in the slaughter process. The study also showed that the high prevalence of Y. pseudotuberculosis in live pigs predisposes carcasses and pluck sets to contamination. When production types and capacities were compared, the prevalence of Y. pseudotuberculosis was higher in organic production than in conventional production and on conventional farms with high rather than low production capacity. We were also able to associate specific farm factors with the prevalence of Y. pseudotuberculosis by using a questionnaire and on-farm observations. On farms, contact with pest animals and the outside environment and a rise in the number of pigs on the farm appear to increase the prevalence of Y. pseudotuberculosis.  相似文献   

14.
Aims: The chromosomal ail gene (attachment and invasion locus) is commonly used as target gene for the detection of pathogenic Y. enterocolitica strains in food testing. The ail PCR does not detect strains of biotype 1A (BT1A), which are regarded as non‐pathogenic because BT1A strains lack the virulence plasmid and chromosomally encoded virulence genes. In some recent reports, however, BT1A strains were discovered that harboured the ail gene. We isolated an ail‐positive strain and characterized this strain with phenotypic and genotypic methods to study its possible relation to pathogenic Y. enterocolitica strains. Methods and Results: The ail region of the BT1A strain was sequenced and compared with the corresponding region of nonpathogenic BT1A strains and pathogenic strains. Pulsed field gel electrophoresis (PFGE) analysis was applied revealing no similarity of the PFGE pattern of this strain to the patterns of pathogenic strains. Virulence‐gene‐based PCR analyses showed the strain to be positive for ystB, but negative for virulence genes ystA, virF and yadA. Whole‐cell MALDI‐TOF MS combined with a shrinkage discriminant analysis approach was applied and clearly classified the ail‐positive biotype 1A strain within the cluster of BT1A strains. Conclusions: PCR detection of ail sequences in food matrices should be followed by the isolation of the responsible strain and its characterization using phenotypic or genotypic methods. Significance and Impact of the Study: The ail gene may be present in Y. enterocolitica BT1A strains, which are commonly considered as nonpathogenic. Efficient methods such as PCR typing of other virulence genes or rapid MALDI‐TOF MS‐based bacterial profiling allow a more comprehensive assessment of the pathogenicity potential of Yersinia strains.  相似文献   

15.

Background

Yersinia enterocolitica outer membrane protein A (OmpA) is one of the major outer membrane proteins with high immunogenicity. We performed the polymorphism analysis for the outer membrane protein A and putative outer membrane protein A (p-ompA) family protein gene of 318 Y. enterocolitica strains.

Results

The data showed all the pathogenic strains and biotype 1A strains harboring ystB gene carried both ompA and p-ompA genes; parts of the biotype 1A strains not harboring ystB gene carried either ompA or p-ompA gene. In non-pathogenic strains (biotype 1A), distribution of the two genes and ystB were highly correlated, showing genetic polymorphism. The pathogenic and non-pathogenic, highly and weakly pathogenic strains were divided into different groups based on sequence analysis of two genes. Although the variations of the sequences, the translated proteins and predicted secondary or tertiary structures of OmpA and P-OmpA were similar.

Conclusions

OmpA and p-ompA gene were highly conserved for pathogenic Y. enterocolitica. The distributions of two genes were correlated with ystB for biotype 1A strains. The polymorphism analysis results of the two genes probably due to different bio-serotypes of the strains, and reflected the dissemination of different bio-serotype clones of Y. enterocolitica.  相似文献   

16.
Classical pathogenic strains of Yersinia enterocolitica produce a 17 kDa outer membrane protein, Ail (attachment-invasion locus), which mediates bacterial attachment to some cultures epithelial cell lines and invasion of others. In the present study, hybridomas were developed for the production of monoclonal antibodies (MAbs) against Ail protein of Y. enterocolitica. A set of five stabilized hybridoma cell lines were generated, of which, two MAbs, YEA 302 and YEA 303, exhibited specific reaction to the native Ail protein (17 kDa) present in whole cell lysate of Y. enterocolitica strains beside having reaction with rAil. The other three MAbs, YEA 5, 17 and 32, had some cross reactions with proteins other than Ail. Two out of five MAbs were IgG1, two were IgG2b and one in IgM in nature. MAbs (YEA 302 and YEA 303) did not show any cross-reaction with whole cell lysate of Brucella abortus, Vibrio cholerae, Salmonella typhimurium and Escherichia coli and other species of Enterobacteriaceae including Y. pestis in ELISA and Western blot analysis. The presence of Ail protein among the strains recovered from pork and milk samples was evaluated by these sets of MAbs and the results were compared with the duplex PCR. Collectively, the data suggest that these MAbs may have the potential for their use in the detection of pathogenic Y. enterocolitica reliably, rapidly and at a relatively low cost.  相似文献   

17.
The origins of human contamination withYersinia enterocolitica are still unknown. We have investigated the major components of a terrestrial ecosystem (soil, earthworms, field voles, shrews, crops, hares, rabbits, and birds) for the presence ofYersinia. Four hundred fifty-nine strains ofYersinia were isolated. We report the first isolations of typicalY. enterocolitica belonging to classical or new biotypes and ofY. enterocolitica-like organisms (sucrose negative; rhamnose positive; melibiose and rhamnose positive) from soil samples, earthworms, crops, and birds. Sucrose-negativeY. enterocolitica strains and biotypes 1, 2, and 3, usually associated with human nonmesenteric syndromes, are predominant in soil, which can be considered as a reservoir for these biotypes.Y. enterocolitica serogroups O∶3 and O∶9, strains of which are responsible in Europe for human mesenteric syndromes, were not found in this study. The epidemiology ofY. enterocolitica infections is discussed.  相似文献   

18.
Abstract

Yersinia species are Gram-negative coccobacilli consisting of three pathogenic species, Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, and five nonpathogenic species, Y. kristensenii, Y. frederiksenii, Y. intermedia, Y. rohdei, and Y. aldovae. The former three species are primary pathogens of wild and domestic animals and birds. In the human, Y. pestis causes plague, or black death, while Y. pseudotuberculosis and Y. enterocolitica produce milder forms of disease varying from diarrhea and abdominal pain to more systemic symptoms such as fever, scarlatiniform skin rash, conjunctivitis, erythema nodosum, and lymphadenopathy (1–3). Complications of reactive arthritis, acute uveitis, coronary aneurysms, and acute renal failure are not infrequently reported after the latter two Yersinia infections (4–8). The mechanisms by which these organisms mediate these complicated symptoms are poorly understood. However, the preferential avidity for lymphoid tissues seen in these species and the characteristic histopathological finding of lymphoid hyperplasia mainly seen in mesenteric lymph nodes (9–10) suggest that the stimulation of a large proportion of T lymphocytes may be involved in the pathogenesis of this infection.  相似文献   

19.
The relationship between invasiveness and calcium dependency was examined in various strains of Yersinia enterocolitica and Y. pseudotuberculosis by using established cell lines. Infection with calcium-dependent bacteria resulted in the formation of microvilli and the adherence of bacteria on the cell surface, and the adherent bacteria were ingested 1.5 hr after infection. Morphological changes in the cells became visible 2 to 3 hr after infection, and intracellular multiplication of the ingested bacteria was noted. When the cells were incubated with bacteria at 37 C for 1.5 hr and then at 25 C, however, the morphological changes in the infected cells were not observed. No isogenic strains that had lost calcium dependency for growth at 37 C were able to elicit the morphological changes in the cells, though they possessed the ability to adhere to and penetrate the cells. The antigen(s) supposedly related to cytotoxicity of the calcium-dependent Yersinia was sought by using antibodies prepared against calcium-dependent bacteria and then absorbed with calcium-independent bacteria and with calcium-independent bacterial cytosol. Double diffusion tests between the antisera and bacterial cytosol extracts revealed the presence of an antigen which was a cytoplasmic substance common to all calcium-dependent but not calcium-independent strains of Y. enterocolitica and Y. pseudotuberculosis.  相似文献   

20.
Based on differences within the yopT-coding region of Yersinia. enterocolitica, Y. pseudotuberculosis and Y. pestis, a rapid and sensitive one-step polymerase chain reaction assay with high specificity for pathogenic Y. enterocolitica was developed. By this method pathogenic isolates of Y. enterocolitica can be easily identified and discriminated from other members of this genus. The entire coding sequence of the yopT effector gene of Y. pseudotuberculosis Y36 was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号