首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We conducted plant species removals, air temperaturemanipulations, and vegetation and soil transplants inAlaskan wet-meadow and tussock tundra communities todetermine the relative importance of vegetation typeand environmental variables in controlling ecosystemmethane (CH4) and carbon dioxide (CO2) flux. Plastic greenhouses placed over wet-meadow tundraincreased air temperature, soil temperature, and soilmoisture, but did not affect CH4 or CO2 flux(measured in the dark). By contrast, removal ofsedges in the wet meadow significantly decreased fluxof CH4, while moss removal tended to increaseCH4 emissions. At 15 cm depth, pore-waterCH4 concentrations were higher in sedge-removalthan in control plots, suggesting that sedgescontribute to CH4 emissions by transportingCH4 from anaerobic soil to the atmosphere, ratherthan by promoting methanogenesis. Inreciprocal-ecosystem transplants between thewet-meadow and tussock tundra communities, CH4and CO2 emissions were higher overall in thewet-meadow site, but were unrelated to transplantorigin. Methane flux was correlated with localvariation in soil temperature, thaw depth, andwater-table depth, but the relative importance ofthese factors varied through the season. Our resultssuggest that future changes in CH4 and CO2flux in response to climatic change will be morestrongly mediated by large-scale changes in vegetationand soil parameters than by direct temperature effects.  相似文献   

2.
Water samples from 45 lakes and 8 rivers in arctic Alaska were analyzed for major anions, cations, nutrients, chlorophyll, zooplankton, and benthos. The waters were dilute (conductivities of 30 to 843 μS cm−1), and their composition varied from Na-Ca-Cl waters near the Arctic Ocean to Ca-Mg-HCO3 waters further inland. Sea salt input in precipitation was important in determining the chemistry of coastal lakes, partly because of low groundwater flow and less time for water to react with shallow unfrozen soils. Further inland, variations in water chemistry among sites were related mainly to differences in bedrock, the age of associated glacial drift, and the input of wind blown sediment. Variations in zooplankton species composition among the lakes were related more to latitude, lake morphometery, and biotic interactions than to water chemistry. The presence of fish as predators mostly determined the overall size structure of the zooplankton community. The chironomid taxa identified have been previously reported from the Neararctic, except for Corynocera oliveri which is a new record. The abundance of the widely distributed chironomid Procladius appears to be controlled by sculpin predation.  相似文献   

3.
Limnological data (e.g., water chemistry, lakewater temperature, vegetation zone and degree of human impact) were collected from lakes spanning the Russian arctic treeline in three regions: on the Taimyr Peninsula and near the mouth of the Lena River, both in central arctic Siberia, and near the mouth of the Pechora River, western arctic Russia. Pearson correlation and canonical variates analyses revealed similar environmental gradients in all three regions. Variables expressing ionic composition of the water (i.e., cations, anions, dissolved inorganic carbon and conductivity) were highly intercorrelated, as were nutrients, chlorophyll a, particulate organic matter and metal (i.e., Fe and Mn) concentrations. Lakewater transparency was related to water colour (i.e., Fe, Mn and dissolved organic carbon) and productivity. Regional differences among the lakes were strong and appeared to reflect differences in geology, hydrology and human impact. For example, Na and Cl concentrations were related to proximity to the ocean in the Lena and Pechora River regions but not in the more inland Taimyr region. Extensive mining and smelting at Norilsk, on the Taimyr Peninsula, has apparently resulted in elevated major ion and metal concentrations in lakes closer to the city. Surface water temperatures, nutrients, and related variables were particularly useful for distinguishing lakes in different vegetation biomes. Forest lakes were typically warmer, with slightly elevated concentrations of dissolved organic carbon (DOC). Lakes in the forest–tundra zone often had higher concentrations of particulate organic matter, Fe and Mn. Tundra lakes were characterized by low nutrient and DOC concentrations. These data will facilitate the development of models that predict the outcome of future climatic change on arctic and subarctic aquatic ecosystems, as well as provide baseline data for future limnological studies in these remote regions.  相似文献   

4.
5.
Methane emissions from wetland soils are generally a positive function ofplant size and primary productivity, and may be expected to increase dueto enhanced rates of plant growth in a future atmosphere of elevatedCO2. We performed two experiments with Orontium aquaticum, acommon emergent aquatic macrophyte in temperate and sub-tropical wetlands, todetermine if enhanced rates of photosynthesis in elevated CO2atmospheres would increase CH4 emissions from wetland soils.O. aquaticum was grown from seed in soil cores under ambient and elevated(ca. 2-times ambient) concentrations of CO2 in an initialglasshouse study lasting 3 months and then a growth chamber study lasting 6months. Photosynthetic rates were 54 to 71% higher underelevated CO2 than ambient CO2, but plantbiomass was not significantly different at the end of the experiment. Ineach case, CH4 emissions were higher under elevated thanambient CO2 levels after 2 to 4 months of treatment, suggestinga close coupling between photosynthesis and methanogenesis in our plant-soilsystem. Methane emissions in the growth chamber study increased by 136%. We observed a significant decrease in transpirationrates under elevated CO2 in the growth chamber study, andspeculate that elevated CO2 may also stimulate CH4 emissions by increasing the extent and duration offlooding in some wetland ecosystems. Elevated CO2 maydramatically increase CH4 emissions from wetlands, a sourcethat currently accounts for 40% of global emissions.  相似文献   

6.
Parke A. Rublee 《Hydrobiologia》1992,240(1-3):133-141
Microplankton community structures and abundance was assessed in lakes at the Toolik Lake LTER site in northern Alaska during the summers of 1989 and 1990. The microplankton community included oligotrich ciliates, but rotifers and zooplankton nauplii comprised greater than 90% of total estimated heterotrophic microplankton biomass. Dominant rotifer taxa included Keratella cochlearis, Kellicottia longispina, Polyarthra vulgaris, Conochilus unicornis and a Synchaeta sp. Microplankton biomass was lowest in highly oligotrophic Toolik Lake (< 5 μgCl−1 at the surface) and highest (up to 55 μCl−1) in the most eutrophic lakes, experimentally fertilized lakes, and fertilized limnocorrals, consistent with bottom-up regulation of microplankton abundance.  相似文献   

7.
Fluxes of N2O,CH4 and CO2 on afforested boreal agricultural soils   总被引:3,自引:0,他引:3  
After drainage of natural boreal peatlands, the decomposition of organic matter increases and peat soil may turn into a net source of CO2 and N2O, whereas CH4 emission is known to decrease. Afforestation is a potential mitigation strategy to reduce greenhouse gas emission from organic agricultural soils. A static chamber technique was used to evaluate the fluxes of CH4, N2O and CO2 from three boreal organic agricultural soils in western Finland, afforested 1, 6 or 23 years before this study. The mean emissions of CH4 and N2O during the growing seasons did not correlate with the age of the tree stand. All sites were sources of N2O. The highest daily N2O emission during the growing season, measured in the oldest site, was as high as 29 mg N2O m–2d–1. In general, organic agricultural soils are sinks for methane. Here, the oldest site acted as a small sink for methane, whereas the two youngest afforested organic soils were sources for methane with maximum emission rates (up to 154 mg m–2d–1) similar to those reported for minerogenous natural peatlands. Soil respiration rates decreased with the age of the forest. The high soil respiration in the younger sites, probably resulted from the high biomass production of herbs, could create soil anaerobiosis and increase methane production. Our results show that afforestation of agricultural peat soils does not abruptly terminate the N2O emissions during the first two decades, and afforestation can even enhance methane emission for a few years. The carbon accumulation in the developing tree stand can partly compensate the carbon loss from soil.  相似文献   

8.
Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 ± 8.2 (mean ± SE) and 61.5 ± 7.1 mg m?2 h?1 for CO2 and 33.7 ± 9.3 and 3.9 ± 1.6 mg m?2 h?1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3? concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodies.  相似文献   

9.
The mineralization of organic carbon to CH4 and CO2 inSphagnum-derived peat from Big Run Bog, West Virginia, was measured at 4 times in the year (February, May, September, and November) using anaerobic, peat-slurry incubations. Rates of both CH4 production and CO2 production changed seasonally in surface peat (0–25 cm depth), but were the same on each collection date in deep peat (30–45 cm depth). Methane production in surface peat ranged from 0.2 to 18.8 mol mol(C)–1 hr–1 (or 0.07 to 10.4 g(CH4) g–1 hr–1) between the February and September collections, respectively, and was approximately 1 mol mol(C)–1 hr–1 in deep peat. Carbon dioxide production in surface peat ranged from 3.2 to 20 mol mol(C)–1 hr–1 (or 4.8 to 30.3 g(CO2) g–1 hr–1) between the February and September collections, respectively, and was about 4 mol mol(C)–1 hr–1 in deep peat. In surface peat, temperature the master variable controlling the seasonal pattern in CO2 production, but the rate of CH4 production still had the lowest values in the February collection even when the peat was incubated at 19°C. The addition of glucose, acetate, and H2 to the peat-slurry did not stimulate CH4 production in surface peat, indicating that CH4 production in the winter was limited by factors other than glucose degradation products. The low rate of carbon mineralization in deep peat was due, in part, to poor chemical quality of the peat, because adding glucose and hydrogen directly stimulated CH4 production, and CO2 production to a lesser extent. Acetate was utilized in the peat by methanogens, but became a toxin at low pH values. The addition of SO4 2– to the peat-slurry inhibited CH4 production in surface peat, as expected, but surprisingly increased carbon mineralization through CH4 production in deep peat. Carbon mineralization under anaerobic conditions is of sufficient magnitude to have a major influence on peat accumulation and helps to explain the thin (< 2 m deep), old (> 13,000 yr) peat deposit found in Big Run Bog.  相似文献   

10.
Winter CO2 CH4 and N2O fluxes on some natural and drained boreal peatlands   总被引:7,自引:0,他引:7  
CO2 and CH4 fluxes during the winter were measured at natural and drained bog and fen sites in eastern Finland using both the closed chamber method and calculations of gas diffusion along a concentration gradient through the snowpack. The snow diffusion results were compared with those obtained by chamber, but the winter flux estimates were derived from chamber data only. CH4 emissions from a poor bog were lower than those from an oligotrophic fen, while both CO2 and CH4 fluxes were higher in theCarex rostrata- occupied marginal (lagg) area of the fen than in the slightly less fertile centre. Average estimated winter CO2-C losses from virgin and drained forested peatlands were 41 and 68 g CO2-C m–2, respectively, accounting for 23 and 21% of the annual total CO2 release from the peat. The mean release of CH4-C was 1.0 g in natural bogs and 3.4 g m–2 in fens, giving rise to winter emissions averaging to 22% of the annual emission from the bogs and 10% of that from the fens. These wintertime carbon gas losses in Finnish natural peatlands were even greater than reported average long-term annual C accumulation values (less than 25g C m–2). The narrow range of 10–30% of the proportion of winter CO2 and CH4 emissions from annual emissions found in Finnish peatlands suggest that a wider generalization in the boreal zone is possible. Drained forested bogs emitted 0.3 g CH4-C m–2 on the average, while the effectively drained fens consumed an average of 0.01 g CH4-C m–2. Reason for the low CH4. efflux or net oxidation in drained peatlands probably lies in low substrate supply and thus low CH4 production in the anoxic deep peat layers. N2O release from a fertilized grassland site in November–May was 0.7 g N2O m–2, accounting for 38% of the total annual emission, while a forested bog released none and two efficiently drained forested fens 0.09 (28% of annual release) and 0.04 g N2O m–2 (27%) during the winter, respectively.  相似文献   

11.
1. Methanogenic carbon can be incorporated by methane‐oxidising bacteria, leading to a 13C‐depleted stable carbon isotopic composition (δ13C) of chironomids that feed on these microorganisms. This has been shown for the chironomid tribe Chironomini, but very little information is available about the δ13C of other abundant chironomid groups and the relationship between chironomid δ13C and methane production in lakes. 2. Methane flux was measured at the water surface of seven lakes in Sweden. Furthermore, fluxes from the sediments to the water column were measured in transects in two of the lakes. Methane fluxes were then compared with δ13C of chitinous chironomid remains isolated from the lake surface sediments. Several different chironomid groups were examined (Chironomini, Orthocladiinae, Tanypodinae and Tanytarsini). 3. Remains of Orthocladiinae in the seven study lakes had the highest δ13C values (?31.3 to ?27.0‰), most likely reflecting δ13C of algae and other plant‐derived organic matter. Remains of Chironomini and Tanypodinae had lower δ13C values (?33.2 to ?27.6‰ and ?33.6 to ?28.0‰, respectively). A significant negative correlation was observed between methane fluxes at the lake surface and δ13C of Chironomini (r = ?0.90, P = 0.006). Methane release from the sediments was also negatively correlated with δ13C of Chironomini (r = ?0.67, P = 0.025) in the transect samples obtained from two of the lakes. The remains of other chironomid taxa were only weakly or not correlated with methane fluxes measured in our study lakes (P > 0.05). 4. Selective incorporation of methane‐derived carbon can explain the observed correlations between methane fluxes and δ13C values of Chironomini. Remains of this group might therefore have the potential to provide information about past changes in methane availability in lakes using sediment records. However, differences in productivity, algal δ13C composition and the importance of allochthonous organic matter input between the studied lakes may also have influenced Chironomini δ13C. More detailed studies with a higher number of analysed samples and detailed measurement of δ13C of different ecosystem components (e.g. methane, dissolved inorganic carbon) will be necessary to further resolve the relative contribution of different carbon sources to δ13C of chironomid remains.  相似文献   

12.
Tropical peatlands play an important role in the global carbon cycling but little is known about factors regulating carbon dioxide (CO2) and methane (CH4) fluxes from these ecosystems. Here, we test the hypotheses that (i) CO2 and CH4 are produced mainly from surface peat and (ii) that the contribution of subsurface peat to net C emissions is governed by substrate availability. To achieve this, in situ and ex situ CO2 and CH4 fluxes were determined throughout the peat profiles under three vegetation types along a nutrient gradient in a tropical ombrotrophic peatland in Panama. The peat was also characterized with respect to its organic composition using 13C solid state cross‐polarization magic‐angle spinning nuclear magnetic resonance spectroscopy. Deep peat contributed substantially to CO2 effluxes both with respect to actual in situ and potential ex situ fluxes. CH4 was produced throughout the peat profile with distinct subsurface peaks, but net emission was limited by oxidation in the surface layers. CO2 and CH4 production were strongly substrate‐limited and a large proportion of the variance in their production (30% and 63%, respectively) was related to the quantity of carbohydrates in the peat. Furthermore, CO2 and CH4 production differed between vegetation types, suggesting that the quality of plant‐derived carbon inputs is an important driver of trace gas production throughout the peat profile. We conclude that the production of both CO2 and CH4 from subsurface peat is a substantial component of the net efflux of these gases, but that gas production through the peat profile is regulated in part by the degree of decomposition of the peat.  相似文献   

13.
We investigated the thermal ecology of three Alaskan streams. Monument Creek (MC) and Little Poker Creek (LPC) are subarctic streams in interior Alaska; LPC is in a permafrost-dominated valley. Imnavait Creek (IC) is an arctic tundra beaded stream in the northern foothills of the Brooks Range. Water temperatures were recorded with automated dataloggers hourly (LPC) or bi-hourly (MC and IC). Records for MC extend through almost three entire years, while data from IC (three years) and LPC (one year) represent the majority of the ice-free season. We also collected winter water/ice temperatures from IC (1989–1990). Mean annual water temperatures were 1.1 °C (LPC), 2.3 °C (MC), and 2.9 °C (IC), while maxima were 5.8 °C (LPC), 13.0 °C (MC), and 21.4 °C (IC). Water temperature rose in the spring about twice as fast (both mean and maximum daily increase) in MC as in LPC, and again about twice as fast in IC as in MC. A similar pattern was observed during the autumnal decline in water temperature. Maximum daily amplitude followed a similar pattern, with MC (6.6 °C) intermediate between LPC (4.1°) and IC (11.6°). LPC accumulated approximately 400 degree-days above 0 °C, MC approximately 950 degree-days, and IC approximately 1000 degree-days. Although it is about 450 km north of the other streams, the tundra stream (IC) accumulated more degree-days, had higher maximum and mean temperatures, greater daily temperature amplitude, and steeper slopes of vernal temperature rise and autumnal temperature decline than the subarctic streams (LPC and MC). The absence of a canopy of riparian plants, channel morphology, and continuous sunlight during the arctic mid-summer accounted for these higher temperatures. Beaded tundra streams provide a highly seasonal (< 120 d ice-free) and spatially and temporally complex thermal environment.  相似文献   

14.
The macroinvertebrate community composition was compared in two Alaskan streams (USA) for numeric and species constancy during the ice-free period from 1981 to 1983. Imnavait Creek is a first order arctic stream (60° 39 N, 149° 21 W) draining upland tundra in the foothills of the Brooks Range. Caribou-Poker Creek is a 4th order subarctic stream (65° 08 N, 147° 28 W) draining the taiga forest north of Fairbanks, Alaska. The aquatic insect larvae and other macroinvertebrates were sampled with drift nets and Hess bottom samplers for four periods, each 1 week long in the ice free season of three years. We found 112 species in the arctic stream and 138 species in the subarctic stream in a chironomid-dominated community. In any sample period the communities contained 51–60 species in the arctic and 49–92 species in the subarctic. Between the four sample periods on average 39% and 50% of the species were present in two sequential samples in the arctic and subarctic stream, respectively. New immigrants, never before found in the system, averaged 37% and 31% of the community, respectively. These systems are exposed to several intermediate disturbances: prolonged and variable freeze-up, extreme variation in discharge, wide diel and seasonal changes in temperature, and erosion by frazil and anchor ice. The dipterans that compose the most numerous and variable taxa must have variable diapause, ability to grow in cold waters, and good dispersal powers, even migrating across drainages in the arctic. Much of the seasonal dominance pattern appears therefore to be stochastic.  相似文献   

15.
Greenup  A. L.  Bradford  M. A.  McNamara  N. P.  Ineson  P.  Lee  J. A. 《Plant and Soil》2000,227(1-2):265-272
Vegetation composition was found to be an important factor controlling CH4 emission from an ombrotrophic peatland in the UK, with significantly greater (P < 0.01) CH4 released from areas containing both Eriophorum vaginatumL. and Sphagnum, than from similar areas without E. vaginatum. Positive correlations were observed between the amount of E. vaginatum and CH4 emission, with the best predictor of flux being the amount of below-ground biomass of this species (r 2 = 0.93). A cutting experiment revealed that there was no significant difference (P > 0.05) in CH4 flux between plots with E. vaginatum stems cut above the water table and plots with intact vegetation, yet there was a 56% mean reduction in CH4 efflux where stems were cut below the water table (P < 0.05). The effect of E. vaginatum on CH4 release was mimicked by the presence of inert glass tubes. These findings suggest that the main short-term role of E. vaginatum in the ecosystem is simply as a conduit for CH4 release. The longer-term importance of E. vaginatum in controlling CH4 fluxes through C substrate input was suggested by the positive correlation between the night-time CO2 and CH4 fluxes (r 2 = 0.70), which only occurred when the vegetation was not senescent. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Rublee  Parke A.  Bettez  Neil D. 《Hydrobiologia》2001,(1):229-232
Lakes N-1 and N-2 at the Arctic Long Term Ecological Research site at Toolik Lake, Alaska, U.S.A. were fertilized with nitrogen and phosphorus for 5 and 6 years, respectively. The response and recovery of the microplankton community (protozoans, rotifers and crustacean nauplii) differed in the two lakes. Microplankton biomass in Lake N-1 increased five-fold while that in Lake-N-2 only doubled, despite larger nutrient additions to N-2. Microplankton community structure in Lake N-1 shifted toward dominance by few taxa, while the community in Lake N-2 maintained diversity. Finally, the recovery of Lake N-1 to near prefertilization microplankton biomass levels was rapid, while Lake N-2 showed at least a 1-year lag in recovery. These differences appear to be related to differences in the structure of lake sediments.  相似文献   

17.
The aim of this study was to correlate magnitude andcontrols of CH4 fluxes with the microtopographyand the vegetation in a hollow-ridge complex of araised bog. High CH4 emission rates were measuredfrom hollows and mud-bottom hollows, while hummocksconsumed atmospheric CH4 at a low rate. Thehighest emissions were measured from plots with Eriophorum vaginatum and Scheuchzeriapalustris. CH4 emission ceased after Scheuchzeria had been clipped below the water table,indicating the importance of this aerenchymatic plantas a conduit for CH4.Peat in the upper catotelm of hollows was younger andless decomposed than in hummocks. Potential CH4production in vitro was higher and themethanogenic association was better adapted to highertemperatures in hollow than in hummock peat. Highertemperatures in hollows resulted in a strongerCH4 source in hollows than in hummocks. Negativefluxes from hummocks indicated that even in wetlandsmethanotrophic bacteria exist that are able to oxidizeCH4 at atmospheric mixing ratios, and thatoxidation controls CH4 emission completely. TheCH4 mixing ratio was low in the acrotelm, but itincreased within the catotelm. Comparing fluxesmeasured in static chambers with fluxes calculatedfrom the porewater CH4 profiles it was deducedthat the zone of methane oxidation was located closeto the water table.In hollows, CH4 production at in situtemperature was far higher than emission into theatmosphere, corresponding to an oxidation rate ofnearly 99%. The CH4 flux between the catotelmand the acrotelm of hollows was also higher than theemission, indicating the importance of CH4oxidation in the aerobic acrotelm, too. CH4microprofiles showed that CH4 oxidation inmud-bottom hollows was confined to the topmost 2 mm,and that in Sphagnum-covered hollows CH4oxidation occurred at the lower edge of green Sphagnum-parts.  相似文献   

18.
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition. Author contributions: JAO: performed research, analyzed data, contributed new methods, wrote the paper; MRT: designed laboratory study, performed research, analyzed data; JWH: designed field study, performed research; KLM: performed research; LEP: performed research, contributed new method; GS: performed research; JCN: performed research.  相似文献   

19.
Carbon isotope ratios (13C) for bubble CH4 in a submerged paddy soil were studied in Yokohama, Japan, throughout a growing period, and its variation was found. Bubble CH4 collected from other 33 paddy fields in Japan was also measured for its 13C and the results agreed with Yokohama. Furthermore, the variation occurred irrespective of the amount and the type of supplied organic substances to the fields (whole rice straw, rice stubble, or compost). The 13C value (average value of -55.9 ± 4.24) from these paddy fields was higher than those of the CH4 emitted from African and North American paddies. The higher value was little affected by their difference in the supplied organic substances. CH4 oxidation likely occurs for bubble CH4 in the shallow paddy fields. A rough estimate of the total CH4 production, using isotope mass balance, showed that 17 to 22% of organic carbon supplied to Japanese paddies transforms to CH4.  相似文献   

20.
We studied the distribution of dissolved O2, CO2, CH4, and N2O in a coastal swamp system in Thailand with the goal to characterize the dynamics of these gases within the system. The gas concentrations varied spatially and seasonally in both surface and ground waters. The entire system was a strong sourcefor CO2 and CH4, and a possible sink for atmospheric N2O. Seasonal variation in precipitation primarily regulated the redox conditions in the system. However, distributions of CO2, CH4, and N2O in the river that received swamp waters were not always in agreement with redox conditions indicated by dissolvedO2 concentrations. Sulfate production through pyriteoxidation occurred in the swamp with thin peat layerunder aerobic conditions and was reflected by elevatedSO 4 2– /Cl in the river water. When SO 4 2– /Cl was high, CO2 and CH4 concentrations decreased, whereas the N2O concentration increased. The excess SO 4 2– in the river water was thus identified as a potential indicator for gas dynamics in this coastal swamp system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号