首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.

Introduction

Lupus nephritis (LN) is a severe and frequent manifestation of systemic lupus erythematosus (SLE). Its pathogenesis has not been fully elucidated but immune complexes are considered to contribute to the inflammatory pathology in LN. High Mobility Group Box 1 (HMGB1) is a nuclear non-histone protein which is secreted from different types of cells during activation and/or cell death and may act as a pro-inflammatory mediator, alone or as part of DNA-containing immune complexes in SLE. Urinary excretion of HMGB1 might reflect renal inflammatory injury. To assess whether urinary HMGB1 reflects renal inflammation we determined serum levels of HMGB1 simultaneously with its urinary levels in SLE patients with and without LN in comparison to healthy controls (HC). We also analyzed urinary HMGB1 levels in relation with clinical and serological disease activity.

Methods

The study population consisted of 69 SLE patients and 17 HC. Twenty-one patients had biopsy proven active LN, 15 patients had a history of LN without current activity, and 33 patients had non-renal SLE. Serum and urine levels of HMGB1 were both measured by western blotting. Clinical and serological parameters were assessed according to routine procedures. In 17 patients with active LN a parallel analysis was performed on the expression of HMGB1 in renal biopsies.

Results

Serum and urinary levels of HMGB1 were significantly increased in patients with active LN compared to patients without active LN and HC. Similarly, renal tissue of active LN patients showed strong expression of HMGB1 at cytoplasmic and extracellular sites suggesting active release of HMGB1. Serum and urinary levels in patients without active LN were also significantly higher compared to HC. Urinary HMGB1 levels correlated with SLEDAI, and showed a negative correlation with complement C3 and C4.

Conclusion

Levels of HMGB1 in urine of SLE patients, in particular in those with active LN, are increased and correlate with SLEDAI scores. Renal tissue of LN patients shows increased release of nuclear HMGB1 compared to control renal tissue. HMGB1, although at lower levels, is, however, also present in the urine of patients without active LN. These data suggest that urinary HMGB1 might reflect both local renal inflammation as well as systemic inflammation.  相似文献   

2.

Introduction

Although renal pathology is highly predictive of the disease course in lupus nephritis, it cannot be performed serially because of its invasive nature and associated morbidity. The goal of this study is to investigate whether urinary levels of CXC ligand 16 (CXCL16), monocyte chemotactic protein-1 (MCP-1) or vascular cell adhesion molecule-1 (VCAM-1) in patients with lupus nephritis are predictive of particular features of renal pathology in renal biopsies obtained on the day of urine procurement.

Methods

CXCL16, MCP-1, and VCAM-1 levels were measured in urine samples from 74 lupus nephritis patients and 13 healthy volunteers. Of the patients enrolled, 24 patients had a concomitant kidney biopsy performed at the time of urine collection. In addition, patients with other renal diatheses were also included as controls.

Results

All three molecules were elevated in the urine of systemic lupus erythematosus patients, although VCAM-1 (area under curve = 0.92) and MCP-1 (area under curve = 0.87) were best at distinguishing the systemic lupus erythematosus samples from the healthy controls, and were also most strongly associated with clinical disease severity and active renal disease. For patients in whom concurrent renal biopsies had also been performed, urine VCAM-1 exhibited the strongest association with the renal pathology activity index and glomerulonephritis class IV, although it correlated negatively with the chronicity index. Interestingly, urinary VCAM-1 was also elevated in anti-neutrophil cytoplasmic antibodies-associated glomerulonephritis, focal segmental glomerulosclerosis and membranous nephropathy but not in minimal-change disease.

Conclusion

Urinary VCAM-1 emerges as a reliable indicator of the activity:chronicity ratios that mark the underlying renal pathology in lupus nephritis. Since VCAM-1 is involved in the acute phase of inflammation when leukocytic infiltration is ongoing, longitudinal studies are warranted to establish whether tracking urine VCAM-1 levels may help monitor clinical and pathological disease activity over time.  相似文献   

3.

Objective

The objective of the study was to assess urinary biomarkers of renal injury for their individual or collective ability to predict Worsening renal function (WRF) in patients with acutely decompensated heart failure (ADHF).

Methods

In a prospective, blinded international study, 87 emergency department (ED) patients with ADHF were evaluated with biomarkers of cardiac stretch (B type natriuretic peptide [BNP] and its amino terminal equivalent [NT-proBNP], ST2), biomarkers of renal function (creatinine, estimated glomerular filtration rate [eGFR]) and biomarkers of renal injury (plasma neutrophil gelatinase associated lipocalin [pNGAL], urine kidney injury molecule-1 [KIM-1], urine N-acetyl-beta-D-glucosaminidase [NAG], urine Cystatin C, urine fibrinogen). The primary endpoint was WRF.

Results

26% developed WRF; baseline characteristics of subjects who developed WRF were generally comparable to those who did not. Biomarkers of renal function and urine biomarkers of renal injury were not correlated, while urine biomarkers of renal injury correlated between each other. Biomarker concentrations were similar between patients with and without WRF except for baseline BNP. Although plasma NGAL was associated with the combined endpoint, none of the biomarker showed predictive accuracy for WRF.

Conclusions

In ED patients with ADHF, urine biomarkers of renal injury did not predict WRF. Our data suggest that a weak association exists between renal dysfunction and renal injury in this setting (Clinicaltrials.gov NCT#0150153).  相似文献   

4.

Background

α/β-hydrolase domain containing (ABHD)12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract). In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG). Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design.

Methodology/Principal Findings

Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR) data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors.

Conclusions/Significance

We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first pharmacophore model of ABHD12 inhibitors. This model should pave the way for further discovery of novel lead structures for ABHD12 selective inhibitors.  相似文献   

5.
6.

Background

Fetal DNA in maternal urine, if present, would be a valuable source of fetal genetic material for noninvasive prenatal diagnosis. However, the existence of fetal DNA in maternal urine has remained controversial. The issue is due to the lack of appropriate technology to robustly detect the potentially highly degraded fetal DNA in maternal urine.

Methodology

We have used massively parallel paired-end sequencing to investigate cell-free DNA molecules in maternal urine. Catheterized urine samples were collected from seven pregnant women during the third trimester of pregnancies. We detected fetal DNA by identifying sequenced reads that contained fetal-specific alleles of the single nucleotide polymorphisms. The sizes of individual urinary DNA fragments were deduced from the alignment positions of the paired reads. We measured the fractional fetal DNA concentration as well as the size distributions of fetal and maternal DNA in maternal urine.

Principal Findings

Cell-free fetal DNA was detected in five of the seven maternal urine samples, with the fractional fetal DNA concentrations ranged from 1.92% to 4.73%. Fetal DNA became undetectable in maternal urine after delivery. The total urinary cell-free DNA molecules were less intact when compared with plasma DNA. Urinary fetal DNA fragments were very short, and the most dominant fetal sequences were between 29 bp and 45 bp in length.

Conclusions

With the use of massively parallel sequencing, we have confirmed the existence of transrenal fetal DNA in maternal urine, and have shown that urinary fetal DNA was heavily degraded.  相似文献   

7.

Background

Calcification of renal allografts is common in the first year after transplantation and is related to hyperparathyroidism. It is associated with an impaired long-term function of the graft (Am J Transplant 5∶1934-41, 2005). Aim of this study is to examine the role of the anti-calcifying/calcifying factors in the pathophysiology of renal allograft calcification.

Methods

We analyzed protocol allograft biopsies, blood and urine samples of 31 patients with and 27 patients without allograft calcification taken at 6 weeks, 3 and 6 months after transplantation. Patient demographical data, cold ischemia time, initial graft function and donor characteristics were comparable between the two groups. Biopsies were stained for osteopontin, fetuin, and matrix-gla-protein. Serum and urine electrolytes, matrix-gla-protein, fetuin, Vitamin D and intact parathyroid hormone in serum and osteopontin (OPN) in urine were examined.

Results

Serum levels of fetuin and matrix-Gla protein as well as urinary levels of OPN showed specific time dependent changes (6 weeks vs. 3 months vs. 6 months; all p<0.0001). In patients with calcifications, urinary levels of OPN were decreased by 55% at 6 weeks and increased thereafter, showing 54% higher levels at 6 months compared to patients without calcification (6 weeks: p<0.01, 6 months: p<0.05). Local protein expression of fetuin-A, matrix-Gla protein and OPN in the graft was specifically increased around calcified plaques, without differences in the mRNA tissue expression.

Conclusion

Anticalcifying factors show significant changes in the early phase after renal transplantation, which may be important for the prevention of allograft calcification. The differences in OPN indicate an involvement of this factor in the regulation of calcification.  相似文献   

8.

Background

Uromodulin, or Tamm-Horsfall protein, is the most abundant urinary protein in healthy individuals. Recent studies have suggested that uromodulin may play a role in chronic kidney diseases. We examined an IgA nephropathy cohort to determine whether uromodulin plays a role in the progression of IgA nephropathy.

Methods

A total of 344 IgA nephropathy patients were involved in this study. Morphological changes were evaluated with the Oxford classification of IgA nephropathy. Enzyme Linked Immunosorbent Assay (ELISA) measured the urinary uromodulin level on the renal biopsy day. Follow up was done regularly on 185 patients. Time-average blood pressure, time-average proteinuria, estimated glomerular filtration rate (eGFR) and eGFR decline rate were caculated. Association between the urinary uromodulin level and the eGFR decline rate was analyzed with SPSS 13.0.

Results

We found that lower baseline urinary uromodulin levels (P = 0.03) and higher time-average proteinuria (P = 0.04) were risk factors for rapid eGFR decline in a follow-up subgroup of the IgA nephropathy cohort. Urinary uromodulin level was correlated with tubulointerstitial lesions (P = 0.016). Patients that had more tubular atrophy/interstitial fibrosis on the surface had lower urinary uromodulin levels (P = 0.02).

Conclusions

Urinary uromodulin level is associated with interstitial fibrosis/tubular atrophy and contributes to eGFR decline in IgA nephropathy.  相似文献   

9.

Background

Black flies (Diptera: Simuliidae) feed on blood, and are important vectors of Onchocerca volvulus, the etiolytic agent of River Blindness. Blood feeding depends on pharmacological properties of saliva, including anticoagulation, but the molecules responsible for this activity have not been well characterized.

Methodology/Principal Findings

Two Kunitz family proteins, SV-66 and SV-170, were identified in the sialome of the black fly Simulium vittatum. As Kunitz proteins are inhibitors of serine proteases, we hypothesized that SV-66 and/or −170 were involved in the anticoagulant activity of black fly saliva. Our results indicated that recombinant (r) SV-66 but not rSV-170 inhibited plasma coagulation. Mutational analysis suggested that SV-66 is a canonical BPTI-like inhibitor. Functional assays indicated that rSV66 reduced the activity of ten serine proteases, including several involved in mammalian coagulation. rSV-66 most strongly inhibited the activity of Factor Xa, elastase, and cathepsin G, exhibited lesser inhibitory activity against Factor IXa, Factor XIa, and plasmin, and exhibited no activity against Factor XIIa and thrombin. Surface plasmon resonance studies indicated that rSV-66 bound with highest affinity to elastase (KD = 0.4 nM) and to the active site of FXa (KD = 3.07 nM). We propose the name “Simukunin” for this novel protein.

Conclusions

We conclude that Simukunin preferentially inhibits Factor Xa. The inhibition of elastase and cathepsin G further suggests this protein may modulate inflammation, which could potentially affect pathogen transmission.  相似文献   

10.

Background

Autosomal dominant polycystic kidney disease (ADPKD) is responsible for 10% of cases of the end stage renal disease. Early diagnosis, especially of potential fast progressors would be of benefit for efficient planning of therapy. Urine excreted proteome has become a promising field of the search for marker patterns of renal diseases including ADPKD. Up to now however, only the low molecular weight fraction of ADPKD proteomic fingerprint was studied. The aim of our study was to characterize the higher molecular weight fraction of urinary proteome of ADPKD population in comparison to healthy controls as a part of a general effort aiming at exhaustive characterization of human urine proteome in health and disease, preceding establishment of clinically useful disease marker panel.

Results

We have analyzed the protein composition of urine retentate (>10 kDa cutoff) from 30 ADPKD patients and an appropriate healthy control group by means of a gel-free relative quantitation of a set of more than 1400 proteins. We have identified an ADPKD-characteristic footprint of 155 proteins significantly up- or downrepresented in the urine of ADPKD patients. We have found changes in proteins of complement system, apolipoproteins, serpins, several growth factors in addition to known collagens and extracellular matrix components. For a subset of these proteins we have confirmed the results using an alternative analytical technique.

Conclusions

Obtained results provide basis for further characterization of pathomechanism underlying the observed differences and establishing the proteomic prognostic marker panel.  相似文献   

11.

Background

Achyranthes bidentata Blume (A. bidentata) is a commonly prescribed Chinese medicinal herb. A. bidentata polypeptides (ABPP) is an active composite constituent, separated from the aqueous extract of A. bidentata. Our previous studies have found that ABPP have the neuroprotective function in vitro and in rat middle cerebral artery occlusion (MCAO) model in attenuating the brain infract area induced by focal ischemia-reperfusion. However, the ultimate goal of the stroke treatment is the restoration of behavioral function. Identifying behavioral deficits and therapeutic treatments in animal models of ischemic stroke is essential for potential translational applications.

Methodology and Principal Findings

The effect of ABPP on motor, sensory, and cognitive function in an ischemic stroke model with MCAO was investigated up to day 30. The function recovery monitored by the neurological deficit score, grip test, body asymmetry, beam-balancing task, and the Morris Water Maze. In this study, systemic administration of ABPP by i.v after MCAO decreased the neurological deficit score, ameliorated the forepaw muscle strength, and diminished the motor and sensory asymmetry on 7th and 30th day after MCAO. MCAO has been observed to cause prolonged disturbance of spatial learning and memory in rats using the MWM, and ABPP treatment could improve the spatial learning and memory function, which is impaired by MCAO in rats, on 30th day after MCAO. Then, the viable cells in CA1 region of hippocampus were counted by Nissl staining, and the neuronal cell death were significantly suppressed in the ABPP treated group.

Conclusion

ABPP could improve the recovery of sensory, motor and coordination, and cognitive function in MCAO-induced ischemic rats. And this recovery had a good correlation to the less of neuronal injury in brain.  相似文献   

12.

Background

Podocyte injury is an early feature of diabetic nephropathy (DN). Recently, urinary exosomal Wilm''s tumor-1 protein (WT1), shed by renal epithelial cells, has been proposed as a novel biomarker for podocyte injury. However, its usefulness as biomarker for early diabetic nephropathy has not been verified yet. We investigated urinary exosomal WT1 in type-1 diabetic patients to confirm its role as a non-invasive biomarker for predicting early renal function decline.

Methods

The expression of WT1 protein in urinary exosomes from spot urine samples of type-1 diabetes mellitus patients (n = 48) and healthy controls (n = 25) were analyzed. Patients were divided based on their urinary albumin excretion, ACR (mg/g creatinine) into non- proteinuria group (ACR<30 mg/g, n = 30) and proteinuria group (ACR>30 mg/g, n = 18). Regression analysis was used to assess the association between urinary exosomal levels of WT1 with parameters for renal function. Receiver Operating Characteristic (ROC) curve analysis was used to determine the diagnostic performance of exosomal WT-1.

Results

WT1 protein was detected in 33 out of 48 diabetic patients and in only 1 healthy control. The levels of urinary exosomal WT1 protein is significantly higher (p = 0.001) in patients with proteinuria than in those without proteinuria. In addition, all the patients with proteinuria but only half of the patients without proteinuria were positive for exosomal WT1. We found that the level of exosomal WT1 were associated with a significant increase in urine protein-to-creatinine ratio, albumin-to-creatinine ratio, and serum creatinine as well as a decline in eGFR. Furthermore, patients exhibiting WT1-positive urinary exosomes had decreased renal function compared to WT1-negative patients. ROC analysis shows that WT-1 effectively predict GFR<60 ml. min-1/1.73 m2.

Conclusion

The predominant presence of WT1 protein in urinary exosomes of diabetic patients and increase in its expression level with decline in renal function suggest that it could be useful as early non-invasive marker for diabetic nephropathy.  相似文献   

13.

Background

Sodium intake and albuminuria have important roles in blood pressure and renal progression. Although their relationship has been reported, the results have not been consistent and all studies have examined small populations.

Objective

This study investigated the role of the estimated 24-h urinary sodium excretion as a marker of sodium intake and albuminuria.

Design

This investigation included 5,187 individuals age 19 years and older from a cross-sectional, nationally representative, stratified survey: The Korea National Health and Nutrition Examination Survey (KNHANES V-2), in 2011. Albuminuria was defined as a urinary albumin/creatinine ratio ≥30 mg/g. The 24-h urinary sodium excretion was estimated from a spot urine.

Results

On classifying our participants into quartiles based on the estimated 24-h urinary sodium excretion, the prevalence of albuminuria increased with the 24-h urinary sodium excretion (5.3, 5.7, 7.5, and 11.8% in the first through fourth quartiles, respectively, p for trend <0.001). Even after adjusting for age, sex, diabetes, obesity, and hypertension, the significance persisted. In a multiple logistic regression analysis, the second and third quartiles of the estimated 24-h urinary sodium excretion were not associated with the presence of albuminuria with the first quartile as a control. However, the fourth quartile was significantly associated with the presence of albuminuria (odds ratio 1.61 [95% confidence interval 1.71–2.21], p = 0.003) after adjusting for age, sex, diabetes, obesity, and hypertension.

Conclusions

These findings suggest that salt intake is associated with the presence of albuminuria in the general Korean adult population.  相似文献   

14.
15.

Background

In clinical practice, there is a lack of markers for the non-invasive diagnosis and follow-up of kidney disease. Exosomes are membrane vesicles, which are secreted from their cells of origin into surrounding body fluids and contain proteins and mRNA which are protected from digestive enzymes by a cell membrane.

Methods

Toxic podocyte damage was induced by puromycin aminonucleoside in rats (PAN). Urinary exosomes were isolated by ultracentrifugation at different time points during the disease. Exosomal mRNA was isolated, amplified, and the mRNA species were globally assessed by gene array analysis. Tissue-specific gene and protein expression was assessed by RT-qPCR analysis and immunohistochemistry.

Results

Gene array analysis of mRNA isolated from urinary exosomes revealed cystatin C mRNA as one of the most highly regulated genes. Its gene expression increased 7.5-fold by day 5 and remained high with a 1.9-fold increase until day 10. This was paralleled by a 2-fold increase in cystatin C mRNA expression in the renal cortex. Protein expression in the kidneys also dramatically increased with de novo expression of cystatin C in glomerular podocytes in parts of the proximal tubule and the renal medulla. Urinary excretion of cystatin C increased approximately 2-fold.

Conclusion

In this proof-of-concept study, we could demonstrate that changes in urinary exosomal cystatin C mRNA expression are representative of changes in renal mRNA and protein expression. Because cells lining the urinary tract produce urinary exosomal cystatin C mRNA, it might be a more specific marker of renal damage than glomerular-filtered free cystatin C.  相似文献   

16.

Background

Reducing salt intake in communities is one of the most effective and affordable public health strategies to prevent hypertension, stroke and renal disease. The present study aimed to determine the sodium intake in Hong Kong Chinese postmenopausal women and identify the major food sources contributing to sodium intake and urine excretion.

Methods

This was a cross-sectional study among 655 Chinese postmenopausal women with prehypertension who were screened for a randomized controlled trial. Data collection included 24 h urine collection for the measurement of sodium, potassium and creatinine, 3-day dietary records, anthropometric measures and questionnaire survey on demographic data and dietary habits.

Results

The average salt intake estimated from urinary excretion was 7.8±3.2 g/d with 82.1% women above WHO recommendation of 5 g/day. Food groups as soup (21.6%), rice and noodles (13.5%), baked cereals (12.3%), salted/preserved foods (10.8%), Chinese dim sum (10.2%) and sea foods (10.1%) were the major contributors of non-discretionary salt. Discretionary salt use in cooking made a modest contribution to overall intake. Vegetable and fruit intake, age, sodium intake from salted foods, sea foods and soup were the independent determinants of urinary sodium excretion.

Conclusions

Our data revealed a significant room for reduction of the sodium intake. Efforts to reduce sodium from diets in Hong Kong Chinese postmenopausal women should focus on both processed foods and discretionary salt during cooking. Sodium reduction in soup and increase in fruit intake would be potentially effective strategy for reducing sodium.  相似文献   

17.

Introduction

Persistent infection with GBV-C (GB Virus C), a non-pathogenic virus related to hepatitis C virus (HCV), prolongs survival in HIV infection. Two GBV-C proteins, NS5A and E2, have been shown previously to inhibit HIV replication in vitro. We investigated whether the GBV-C NS3 serine protease affects HIV replication.

Results

GBV-C NS3 protease expressed in a human CD4+ T lymphocyte cell line significantly inhibited HIV replication. Addition of NS4A or NS4A/4B coding sequence to GBV-C NS3 increased the effect on HIV replication. Inhibition of HIV replication was dose-dependent and was not mediated by increased cell toxicity. Mutation of the NS3 catalytic serine to alanine resulted in loss of both HIV inhibition and protease activity. GBV-C NS3 expression did not measurably decrease CD4 or CXCR4 expression.

Conclusion

GBV-C NS3 serine protease significantly inhibited HIV replication without decreasing HIV receptor expression. The requirement for an intact catalytic serine at the active site indicates that inhibition was mediated by proteolytic cleavage of an unidentified target(s).  相似文献   

18.

Background

Iatrogenic transmission of human prion disease can occur through medical or surgical procedures, including injection of hormones such as gonadotropins extracted from cadaver pituitaries. Annually, more than 300,000 women in the United States and Canada are prescribed urine-derived gonadotropins for infertility. Although menopausal urine donors are screened for symptomatic neurological disease, incubation of Creutzfeldt-Jakob disease (CJD) is impossible to exclude by non-invasive testing. Risk of carrier status of variant CJD (vCJD), a disease associated with decades-long peripheral incubation, is estimated to be on the order of 100 per million population in the United Kingdom. Studies showing infectious prions in the urine of experimental animals with and without renal disease suggest that prions could be present in asymptomatic urine donors. Several human fertility products are derived from donated urine; recently prion protein has been detected in preparations of human menopausal gonadotropin (hMG).

Methodology/Principal Findings

Using a classical proteomic approach, 33 and 34 non-gonadotropin proteins were identified in urinary human chorionic gonadotropin (u-hCG) and highly-purified urinary human menopausal gonadotropin (hMG-HP) products, respectively. Prion protein was identified as a major contaminant in u-hCG preparations for the first time. An advanced prion protein targeted proteomic approach was subsequently used to conduct a survey of gonadotropin products; this approach detected human prion protein peptides in urine-derived injectable fertility products containing hCG, hMG and hMG-HP, but not in recombinant products.

Conclusions/Significance

The presence of protease-sensitive prion protein in urinary-derived injectable fertility products containing hCG, hMG, and hMG-HP suggests that prions may co-purify in these products. Intramuscular injection is a relatively efficient route of transmission of human prion disease, and young women exposed to prions can be expected to survive an incubation period associated with a minimal inoculum. The risks of urine-derived fertility products could now outweigh their benefits, particularly considering the availability of recombinant products.  相似文献   

19.

Introduction

In a recent screening to detect biomarkers in systemic lupus erythematosus (SLE), expression of the iron storage protein, ferritin, was increased. Given that proteins that regulate the storage, transfer and release of iron play an important role in inflammation, this study aims to determine the serum and urine levels of ferritin and of the iron transfer protein, transferrin, in lupus patients and to correlate these levels with disease activity, inflammatory cytokine levels and markers of anemia.

Methods

A protein array was utilized to measure ferritin expression in the urine and serum of SLE patients and healthy controls. To confirm these results as well as the role of the iron transfer pathway in SLE, ELISAs were performed to measure ferritin and transferrin levels in inactive or active SLE patients and healthy controls. The relationship between ferritin/transferrin levels and inflammatory markers and anemia was next analyzed.

Results

Protein array results showed elevated ferritin levels in the serum and urine of lupus patients as compared to controls, which were further validated by ELISA. Increased ferritin levels correlated with measures of disease activity and anemia as well as inflammatory cytokine titers. Though active SLE patients had elevated urine transferrin, serum transferrin was reduced.

Conclusion

Urine ferritin and transferrin levels are elevated significantly in SLE patients and correlate with disease activity, bolstering previous reports. Most importantly, these changes correlated with the inflammatory state of the patients and anemia of chronic disease. Taken together, altered iron handling, inflammation and anemia of chronic disease constitute an ominous triad in SLE.  相似文献   

20.

Background

Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse.

Methods

Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species.

Results

We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein.

Conclusions

We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号