首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this study we aimed to investigate whether transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) reduces interference effects of a dual task (DT) on post-exercise facilitation (PEF) of the motor evoked potentials. Anodal tDCS reversed the DT interference on PEF after a non-fatiguing isometric contraction. We conclude that anodal DLPFC tDCS improves the ability to allocate attentional resources and modulates plastic adaptations across brain systems.  相似文献   

2.
3.
目的: 探究生命早期不同阶段PM2.5暴露对子代大鼠前额皮层的影响。方法: 将12只受孕后的SD孕鼠按体重随机分为对照组(CG)、母亲孕期暴露组(MG)、出生早期暴露组(EP)和全围产期暴露组(PP),每组3只。进行孕鼠与子鼠的清洁空气或8倍浓缩PM2.5的暴露,其中CG组全程不暴露,MG组从妊娠第1日(GD1)暴露到GD21,EP组从出生第1日(PND1)暴露到PND21,PP组从GD1一直暴露到PND21。暴露完成后,取各组6只子代大鼠的前额皮层,采用HE染色进行病理学检测;酶联免疫吸附实验(ELISA)进行神经炎性因子检测;高效液相色谱-质谱分析进行神经递质检测;免疫印迹实验(Western blot)进行星形胶质细胞标志物检测;比色法进行脑组织氧化应激检测。结果: 与MG组和CG组子鼠比较,PP组和EP组子鼠前额皮层的病理学变化更加明显。与MG组和CG组子鼠比较,PP组和EP组大鼠的神经炎性因子IL-1、IL-6和TNF-α均显著增加(P<0.01),且MT水平显著减少(P<0.05),OT水平呈现下降趋势;神经递质Ach水平也显著增加(P<0.01)。与MG组和CG组子鼠比较,PP组和EP组子鼠的GFAP水平呈升高趋势。与MG组和CG组子鼠比较,PP组和EP组子鼠的氧化应激指标SOD水平显著减少(P<0.01),ROS水平显著增加(P<0.01)。与CG组子鼠比较PP组子鼠的CAT水平显著减少(P< 0.01),与MG组子鼠比较PP组子鼠的CAT水平显著减少(P<0.05);与CG组子鼠比较EP组子鼠的CAT水平显著减少(P<0.05)。尚未发现PP组子鼠与EP组子鼠之间、MG组子鼠与CG组子鼠之间在IL-1、IL-6、TNF-α、MT、OT、Ach、GFAP、SOD、ROS和CAT水平存在差异。结论: 生命早期PM2.5暴露可对子代雄性大鼠前额皮层产生不良影响,出生早期暴露可能更为敏感。  相似文献   

4.
Several decades of patient, functional imaging and neurophysiological studies have supported a model in which the lateral prefrontal cortex (PFC) acts to suppress unwanted saccades by inhibiting activity in the oculomotor system. However, recent results from combined PFC deactivation and neural recordings of the superior colliculus in monkeys demonstrate that the primary influence of the PFC on the oculomotor system is excitatory, and stands in direct contradiction to the inhibitory model of PFC function. Although erroneous saccades towards a visual stimulus are commonly labelled reflexive in patients with PFC damage or dysfunction, the latencies of most of these saccades are outside of the range of express saccades, which are triggered directly by the visual stimulus. Deactivation and pharmacological manipulation studies in monkeys suggest that response errors following PFC damage or dysfunction are not the result of a failure in response suppression but can best be understood in the context of a failure to maintain and implement the proper task set.  相似文献   

5.
6.
Aerobic exercise is known to influence brain function, e.g., enhancing executive function in both children and adults, with many of these influences being attributed to alterations in neurogenesis and neuronal function. Yet oligodendroglia in adult brains have also been reported to be highly responsive to exercise, including in the prefrontal cortex (PFC), a late myelinating region implicated in working memory. However, whether exercise affects oligodendroglia or myelination in juveniles, either in the PFC or in other brain regions, remains unknown. To address this, both juvenile and young adult mice were provided free access to running wheels for four weeks followed by an analysis of oligodendrocyte development and myelination in the PFC and the corpus callosum, a major white matter tract. Working memory and PFC NG2+ cell development were both affected by exercise in juvenile mice, yet surprisingly these exercise‐mediated effects were distinct in juveniles and young adults. In the PFC, NG2+ cell proliferation was increased in exercising juveniles, but not young adults, whereas newly‐born oligodendrocyte production was increased in exercising young adults, but not juveniles. Although no overall changes in myelin genes were found, elevated levels of Monocarboxylate Transporter 1, a glial lactate transporter important during active myelination, were found in the PFC of exercising young adults. Overall our findings reveal that long‐term exercise modulates PFC glial development and does so differentially in juvenile and young adult mice, providing insight into the cellular responses that may underlie cognitive benefits to teenagers and young adults in response to exercise. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 687–700, 2018  相似文献   

7.
Due to personal and working necessities, the time for exercise is often short, and scheduled early in the morning or late in the afternoon. Cortisol plays a central role in the physiological and behavioral response to a physical challenge and can be considered as an index of exercise stress. Therefore, the aim of this study was to evaluate the influence of the circadian phenotype classification on salivary cortisol concentration in relation to an acute session of high-intensity interval exercise (HIIE) performed at different times of the day. Based on the morningness–eveningness questionnaire, 12 M-types (N = 12; age 21 ± 2 years; height 179 ± 5 cm; body mass 74 ± 12 kg, weekly training volume 8 ± 1 hours) and 11 E-types (N = 11; age 21 ± 2 years; height 181 ± 11 cm; body mass 76 ± 11 kg, weekly training volume 7 ± 2 hours) were enrolled in a randomized crossover study. All subjects underwent measurements of salivary cortisol secretion before (PRE), immediately after (POST), and 15 min (+15 min), 30 min (+30 min), 45 min (+45 min) and 60 min (+60 min) after the completion of both morning (08.00 am) and evening (08.00 p.m.) high-intensity interval exercise. Two-way analysis of variance with Tuckey’s multiple comparisons test showed significant increments over PRE-cortisol concentrations in POSTcondition both in the morning (4.88 ± 1.19 ng · mL?1 vs 6.60 ± 1.86 ng · mL?1, +26.1%, P < 0.0001, d > 0.8) and in the evening (1.56 ± 0.48 ng · mL?1 vs 2.34 ± 0.37, +33.4%, P = 0.034, d > 0.6) exercise in all the 23 subject that performed the morning and the evening HIIE. In addition, during morning exercise, significant differences in cortisol concentration between M-types and E-types at POST (5.49 ± 0.98 ng · mL?1 versus 8.44 ± 1.08 ng · mL?1, +35%, P < 0.0001, d > 0.8), +15 min (4.52 ± 0.42 ng · mL?1 versus 6.61 ± 0.62 ng · mL?1, +31.6%, P < 0.0001, d > 0.8), +30 min (4.10 ± 1.44 ng · mL?1 versus 6.21 ± 1.60 ng · mL?1, +34.0%, P < 0.0001, d = 0.7), + 45 min (3.78 ± 0.55 ng · mL?1 versus 5.80 ± 0.72 ng · mL?1, +34.9%, P < 0.0001, d = 0.7), and + 60 min condition(3.53 ± 0.45 ng · mL?1 versus 5.78 ± 1.13 ng · mL?1, 38.9%, P = 0.0008, d = 0.7) were noted. No statistical significant differences between M-types and E-types during evening HIIE on post-exercise cortisol concentration were detected. E-types showed a higher morning peak of salivary cortisol respect to M-types when performing a HIIE early in the morning and produced higher salivary cortisol concentrations after the cessation of the exercise. Practical applications suggest that it is increasingly important for the exercise professionals to identify the compatibility between time of day for exercising and chronotype to find the individual’s favorable circadian time to perform a HIIE.  相似文献   

8.
Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is effective in treatment‐refractory obsessive‐compulsive disorder and major depressive disorder. However, little is known about the neurobiological mechanisms underlying the rapid and effective changes of DBS. One of the hypotheses is that DBS modulates activity of monoamine neurotransmitters. In this study, we evaluated the effects of DBS in the NAc core on the extracellular concentration of monoaminergic neurotransmitters in the medial (mPFC) and orbital prefrontal cortex (OFC). Freely moving rats were bilaterally stimulated in the NAc core for 2 h while dopamine, serotonin, and noradrenaline were measured using in vivo microdialysis in the mPFC and the OFC. We report rapid increases in the release of dopamine and serotonin to a maximum of 177% and 127% in the mPFC and an increase up to 171% and 166% for dopamine and noradrenaline in the OFC after onset of stimulation in the NAc core. These results provide further evidence for the distal effects of DBS and corroborate previous clinical and pre‐clinical findings of altered neuronal activity in prefrontal areas.  相似文献   

9.
It is known that regular aerobic exercise enhances cognitive functions and increases blood insulin-like growth factor 1 (IGF-1) levels. People living in urban areas spend most of their time indoors and indoor air quality can affect health. We investigated the effects of aerobic exercise in poor and good air quality environments on hippocampus and prefrontal cortex (PFC) neurons, anxiety, and spatial learning and memory in adolescent mice. Poor air quality impaired spatial learning and memory; exercise did not affect learning or memory impairment. Exercise in a good air quality environment improved spatial learning and memory. Poor air quality increased apoptosis in the hippocampus and PFC. Both exercised and sedentary groups living in a poor air quality environment had lower serum IGF-1 levels than those living in a good air quality environment. Living in a poor air quality environment has negative effects on the hippocampus, PFC and blood IGF-1 levels in adolescent mice, but exercise did not alter the negative effects of poor air quality.  相似文献   

10.
目的观察创伤后应激障碍(PTSD)样大鼠前额内侧皮质(medial prefrontal cortex,mPFC)神经元核受体-盐皮质激素受体(Mineralocorticoid receptors,MR)表达的变化。方法采用国际认定的单一连续应激(single prolonged stress,SPS)方法建立PTSD大鼠模型,取成年健康雄性Wistar大鼠90只,随机分为PTSD模型1d、7d、14d、28d和正常对照组。采用免疫组化、免疫印迹和RT-PCR方法分别进行各组mPFC神经元MR表达变化的观察及检测,进行图像分析和统计学处理。结果 PTSD大鼠mPFC神经元MR的表达在SPS-1d时高于对照组,随后下降,SPS-14d最低,SPS-28d恢复性上调,但仍然低于对照组(P<0.05)。结论 PTSD模型大鼠经SPS处理后,mPFC中出现MR表达的变化,该变化可能参与PTSD的下丘脑-垂体-肾上腺(hypothalamic pituitary adren axis,HPA)轴的变化机制。  相似文献   

11.
目的: 探讨4周橘皮素补充对高强度抗阻运动诱发的皮质醇应激反应的影响。方法: 将24名短跑运动员进行配对,随机分为试验组和对照组。试验组每天补充橘皮素补剂(含橘皮素200 mg),对照组每天补充安慰剂,为期4周。两组运动员均在干预前一日和干预后次日进行抗阻运动激发试验(推举、深蹲、卧推和硬拉,每个动作×4组×10RM)。采集受试者在运动激发试验前即刻(PRE)、试验后即刻(P0)以及第10(P10)、20(P20)和30(P30)分钟时的血液样本,测量血清皮质醇、促肾上腺皮质激素(ACTH)、超氧化物歧化酶(SOD)、白细胞计数(WBC)和血糖,以及PRE和P0时的血乳酸值。结果: 与干预前同期比较,补充橘皮素4周后,试验组在激发试验前PRE的血清皮质醇水平(P=0.017)、激发试验后P10的血清皮质醇水平(P=0.010)、激发试验后P20和激发试验后P30的血清皮质醇水平均显著降低(P<0.05或 P<0.01),试验组在激发试验前PRE的WBC、激发试验后P10的ACTH(P=0.037)和激发试验后P30的WBC、ACTH均显著降低(P<0.05);与对照组比较,试验组在激发试验前PRE和激发试验后P10的血清皮质醇水平显著降低(P<0.05),激发试验后P30的ACTH和WBC水平显著降低(P<0.05,P<0.01)、SOD活性水平显著升高(P<0.05)。结论: 橘皮素能有效缓解高强度运动诱发的人体皮质醇应激反应,抑制皮质醇过度分泌,提升人体抗氧化能力,加速体内炎症消除,促进身体机能恢复。  相似文献   

12.
13.
α1‐adrenoceptors (α1‐ARs) stimulation has been found to enhance excitatory processes in many brain regions. A recent study in our laboratory showed that α1‐ARs stimulation enhances glutamatergic transmission via both pre‐ and post‐synaptic mechanisms in layer V/VI pyramidal cells of the rat medial prefrontal cortex (mPFC). However, a number of pre‐synaptic mechanisms may contribute to α1‐ARs‐induced enhancement of glutamate release. In this study, we blocked the possible post‐synaptic action mediated by α1‐ARs to investigate how α1‐ARs activation regulates pre‐synaptic glutamate release in layer V/VI pyramidal neurons of mPFC. We found that the α1‐ARs agonist phenylephrine (Phe) induced a significant enhancement of glutamatergic transmission. The Phe‐induced potentiation was mediated by enhancing pre‐synaptic glutamate release probability and increasing the number of release vesicles via a protein kinase C‐dependent pathway. The mechanisms of Phe‐induced potentiation included interaction with both glutamate release machinery and N‐type Ca2+ channels, probably via a pre‐synaptic Gq/phospholipase C/protein kinase C pathway. Our results may provide a cellular and molecular mechanism that helps explain α1‐ARs‐mediated influence on PFC cognitive functions.

  相似文献   


14.
目的:探讨不同强度运动结合白藜芦醇对老年肥胖大鼠内脏脂肪组织视黄醇结合蛋白4(RBP4) mRNA蛋白表达及血浆RBP4浓度的影响。方法:选择鼠龄3周的雄性SD大鼠80只,随机分为对照组和实验组:对照组(C)饲喂6.0%脂肪的普通饲料(n=12);实验组分3个阶段饲喂36%~40%高脂饲料(n=68)。建立老年肥胖大鼠模型,选取24只建模成功的肥胖大鼠随机分为4组(n=6):肥胖对照组(CO)、白藜芦醇组(RO)、低强度运动+白藜芦醇组(LRO)、中强度运动+白藜芦醇组(MRO)。LRO组和MRO组的运动强度分别为(12 m/min×15 min)和(15 m/min×15 min),每天运动60 min;补充白藜芦醇各组52.5 mg/kg·d灌胃1次,对照组采用等量的纯净水灌胃,持续干预8周。8周后采血和肾周、睾周、血管及内脏脂肪组织,检测血糖和血浆RBP4浓度、计算胰岛素敏感性(ISI),检测RBP4 mRNA和蛋白表达。结果:与正常组比较,模型组大鼠RBP4 mRNA和蛋白表达、血浆浓度及血糖指标明显升高(P<0.05,P<0.01),ISI明显降低(P<0.05);与模型组比较,RO、LRO组和MRO组大鼠RBP4 mRNA和蛋白表达、血浆浓度及血糖指标明显降低(P<0.05,P<0.01),ISI明显升高(P<0.05);RO、LRO组和MRO组之间比较,MRO组大鼠RBP4 mRNA和蛋白表达、血浆浓度及血糖指标明显降低,ISI明显升高,但无显著差异。结论:不同强度运动结合白藜芦醇能降低老年肥胖大鼠内脏脂肪组织RBP4 mRNA和蛋白表达及血浆RBP4浓度,受运动强度影响较小。  相似文献   

15.
The purpose of this study was to examine whether arm cranking exercise induces changes in skin blood flow in the paralyzed lower limbs of people with injuries to the spinal cord (PISC). Ten PISC with lesions located between Th5 and L5 and six control subjects performed arm cranking exercise for 6 min at three intensities, 10, 30 and 50 W, at a room temperature of 25°C. Oxygen uptake (Vo2) and heart rate (HR) were measured for the last 2 min of each exercise period. The skin blood flow at the anterior thigh (BFsk,t) was continuously monitored using laser Doppler flowmetry for the whole 6-min period and for the first 10 min of recovery following exercise. During exercise, the PISC showed lower Vo2 and greater HR than the control subjects. No increase in BFsk,t was found in six of the PISC with lesions at or above Th12, irrespective of the exercise intensity. On the other hand, in PISC with lesions at L1 or below, BFsk,t increased significantly (P < 0.05) with an increase in Vo2 and HR, although the BFsk,t at a given Vo2 and HR was lower than that in the control subjects. These results would suggest that arm exercise can promote the blood circulation in the skin of the lower limbs if the injury level is below L1.  相似文献   

16.
17.
18.
The effects of long-term treatment with imipramine or mirtazapine, two antidepressant drugs with different mechanisms of action, on the response of cortical dopaminergic neurons to foot-shock stress or to the anxiogenic drug FG7142 were evaluated in freely moving rats. As expected, foot shock induced a marked increase (+ 90%) in the extracellular concentration of dopamine in the prefrontal cortex of control rats. Chronic treatment with imipramine or mirtazapine inhibited or prevented, respectively, the effect of foot-shock stress on cortical dopamine output. Whereas acute administration of the anxiogenic drug FG7142 induced a significant increase (+ 60%) in cortical dopamine output in control rats, chronic treatment with imipramine or mirtazapine completely inhibited this effect. In contrast, the administration of a single dose of either antidepressant 40 min before foot shock, had no effect on the response of the cortical dopaminergic innervation to stress. These results show that long-term treatment with imipramine or mirtazapine inhibits the neurochemical changes elicited by stress or an anxiogenic drug with an efficacy similar to that of acute treatment with benzodiazepines. Given that episodes of anxiety or depression are often preceded by stressful events, modulation by antidepressants of the dopaminergic response to stress might be related to the anxiolytic and antidepressant effects of these drugs.  相似文献   

19.
In a previous study it was shown that nitroprusside-induced hypotension strongly enhances the release of dopamine (DA) in the prefrontal cortex (PFC). In the present study we have further investigated the mechanism involved in this effect. Glutamate receptor antagonists were infused into the ventral tegmental area (VTA) or PFC, while DA release was measured in the ipsilateral PFC and hypotension was applied by intravenous infusion of nitroprusside. Infusion into the VTA of neither a NMDA receptor antagonist (CPP), nor a non-NMDA antagonist (DNQX) affected the hypotension-induced increase of DA in the PFC. Intracortical infusion of CPP also failed to affect significantly, whereas local infusion of DNQX inhibited the hypotension-enhanced release of DA dose-dependently. The stimulation of DA release was relatively small in the VTA as well as in the nucleus accumbens when compared with the response in the PFC. It is concluded that DA released from mesocortical neurons can be modulated by two different mechanisms: first, by glutamate afferents to the VTA that modify the nerve-impulse flow of DA neurons; and, second, by glutamate afferents to the PFC that act at the level of the DA nerve terminals. The behaviour context (arousal or stress versus hypotension) determines which type of interaction predominates.  相似文献   

20.
The thalamic reticular nucleus (TRN), part of the thalamus, is a thin GABAergic cell layer adjacent to the relay nuclei of the dorsal thalamus. It receives input from the cortex and other thalamic nuclei and provides major inhibitory input to each thalamic nucleus, particularly the mediodorsal nucleus (MD). As the MD is important for supporting optimal cortico–thalamo–cortical interactions during brain maturation, we hypothesized that that early damage to the TRN will cause major disturbances to the development and the functioning of the prefrontal cortex (PFC) and the MD. Rat pups at P4 were randomized in three groups: electrolytic lesion of TRN, TRN‐sham‐lesion group, and the classical control group. Seven weeks later, all rats were tested with several behavioral and cognitive paradigms, and then perfused for histological and immunohistochemical studies. Results showed that TRN lesion rats exhibited reduced spontaneous activity, high level of anxiety, learning and recognition memory impairments. Besides the behavioral effects observed after early TRN lesions, our study showed significant cytoarchitectural and functional changes in the cingulate cortex, the dorsolateral and prelimbic subdivisions of the PFC, as well as in the MD. The assessment of the basal levels of neuronal activity revealed a significant reduction of the basal expression of C‐Fos levels in the PFC. These experiments, which are the first to highlight the effects of early TRN lesions, provided evidence that early damage of the anterior part of the TRN leads to alterations that may control the development of the thalamocortical–corticothalamic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号