首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To determine the effect of one-legged sprint training on muscle pH and nonbicarbonate buffering capacity (BC), 9 subjects completed 15 to 20 intervals at 90 RPM, 4 days a week for 7 weeks on a bicycle ergometer adapted for one-legged pedaling. Needle biopsies from the vastus lateralis and blood samples from an antecubital vein were taken at rest and twice during recovery (1 and 4 minutes) from a 60 s one-legged maximal power test on a cycle ergometer. pH one minute after exercise in both the trained and untrained legs following the training period was not different but both were higher than before training. BC increased from 49.9 to 57.8 mumol HCl x g-1 x pH-1 after training (p less than 0.05). Blood lactate levels after exercise were significantly higher for the trained leg when compared to the untrained leg after spring training. Peak and average power output on the 60 s power test increased significantly after training. One-legged aerobic power (VO2max) was significantly increased in the untrained and trained legs. Two-legged VO2max also improved significantly after training. These data suggest that nonbicarbonate buffering capacity and power output can be enhanced with one-legged sprint training. Also, small but significant improvements in VO2max were also observed.  相似文献   

2.
In trained subjects, circulating PRL and GH increase significantly after a 20 minutes exercise on ergometer bicycle performed either at submaximal or maximal intensity. The magnitude of PRL response appeared to be similar for both kinds of exercise, but the increase in GH level is higher after maximal exercise than after submaximal one.  相似文献   

3.
The effects of beta 1 and beta 1/2 blockade on exercise capacity were studied in 9 healthy normotensive subjects. Progressive maximal bicycle ergometer tests, followed by an endurance test at 80% of maximal work load, were performed during randomized, double-blind 3 day treatment periods with placebo, atenolol (beta 1) and oxprenolol (beta 1/2). The reduction of maximal work capacity (ca. 10%) was similar with atenolol and oxprenolol, despite a more pronounced maximal heart rate reduction with atenolol (from 175 +/- 2 to 132 +/- 3 beats.min-1) than with oxprenolol (to 138 +/- 2 beats.min-1). Exercise time during the endurance test was reduced from 36 +/- 4 min with placebo to 27 +/- 3 min with atenolol (p less than 0.05) and 24 +/- 3 min with oxprenolol (p less than 0.01) (atenolol vs. oxprenolol: p less than 0.05). During the endurance test, plasma glycerol and non-esterified fatty acid concentrations were reduced with both atenolol and oxprenolol. The glycerol reduction was more pronounced with oxprenolol than with atenolol, plasma NEFA concentrations being similar. Plasma glucose and lactate concentrations were reduced by oxprenolol but not with atenolol. These data show that submaximal exercise capacity at work loads representing similar relative exercise intensities is reduced during non-selective and beta 1-selective beta blockade. This reduction may be related to the effects of beta 1 blockade on energy metabolism, with possibly an additional effect of beta 2 blockade.  相似文献   

4.
In the present study, the effect of endurance training alone and endurance training combined with recombinant human growth hormone (rhGH) administration on subcutaneous abdominal adipose tissue lipolysis was investigated. Sixteen healthy women [age 75 +/- 2 yr (mean +/- SE)] underwent a 12-wk endurance training program on a cycle ergometer. rhGH was administered in a randomized, double-blinded, placebo-controlled design in addition to the training program. Subcutaneous abdominal adipose tissue lipolysis was estimated by means of microdialysis combined with measurements of subcutaneous abdominal adipose tissue blood flow (ATBF; (133)Xe washout). Whole body fat oxidation was estimated simultaneously by indirect calorimetry. Before and after completion of the training program, measurements were performed both at rest and during 60 min of continuous cycling at a workload corresponding to 60% of pretraining peak oxygen uptake. Endurance training alone did not affect subcutaneous abdominal adipose tissue lipolysis either at rest or during exercise, as reflected by identical levels of interstitial adipose tissue glycerol, subcutaneous abdominal ATBF, and plasma nonesterified fatty acids before and after completion of the training program. Similarly, no effect on subcutaneous abdominal adipose tissue lipolysis was observed when combining endurance training with rhGH administration. However, in both the placebo and the GH groups, fat oxidation was significantly increased during exercise performed at the same absolute workload after completion of the training program. We conclude that the changed lipid metabolism during exercise observed after endurance training alone or after endurance training combined with rhGH administration is not due to alterations in subcutaneous abdominal adipose tissue metabolism in elderly women.  相似文献   

5.
Effect of endurance training on gross energy expenditure during exercise   总被引:1,自引:0,他引:1  
We compared the effect of endurance exercise training on gross energy expenditure (GEE) during steady-state exercise in 20 younger men (31.2 +/- 0.6 years) and 20 middle-aged men (49.2 +/- 1.1 years). The subjects trained for eight months. The training program consisted of three 45-min walking and jogging exercise sessions per week at an intensity of approximately 60-85% of the heart rate at peak VO2. We administered bicycle ergometer tests at 0, 4, and 8 months into training. Participants exercised at a power output of 100 W for 10 min using a pedaling frequency of 50 rpm. We determined GEE (kcal/min) by measuring the oxygen consumption and respiratory exchange ratio. We found a significant reduction (p less than 0.05) in GEE (0.7-1.3 kcal/min) following 4 months of endurance training in both age groups, with a further reduction (p less than 0.05) noted in only the middle-aged group at month 8. We found no difference (p greater than 0.05) in GEE between the younger and middle-aged men. We conclude that chronic exercise may modify GEE during a submaximal exercise bout and that this adaptation is similar in magnitude in younger and middle-aged men.  相似文献   

6.
Physiological reaction and oxygen intake during exercise and recovery were measured in fourteen young female Japanese during the follicular phase of their menstrual cycle at 25 degree C with 50% relative humidity and at 35 degree C with 50% relative humidity. Subjects, clad in bathing suits only, performed a bicycle ergometer exercise at a constant work load of 600 kg . m/min at a cycling rate of 50 rpm for 20 min and recovered while remaining on the bicycle ergometer for 40 min. The mean values of sweat volume and skin temperature were significantly greater at 35 degree C than at 25 degree C. It has been shown that heart rate and rectal temperature during exercise were slightly higher at 35 degree C than at 25 degree C, while those during recovery were significantly higher at 35 degree C than at 25 degree C. Oxygen intake, oxygen debt, and the fall in diastolic blood pressure after exercise were considerably greater at 35 degree C than at 25 degree C. The increase in oxygen intake in a hot environment might result from an increased metabolism due to higher body temperature and increased energy requirement for heat dissipation such as profuse sweating, higher heart rate, and increased ventilatory volume. The increase in oxygen debt in a hot environment might reflect the increased metabolism caused by higher body temperature and the increased production of lactic acid in the working muscle as a result of an insufficient blood supply to the muscle. The increases in sweat volume, oxygen intake during exercise, and oxygen debt in women in a hot environment were considerably smaller than corresponding values for men. The smaller increase in sweat volume in women in a hot environment could reflect a smaller oxygen intake and a more marked dilation of skin vessels in women than in men.  相似文献   

7.
In a double-blind cross-over study, the effects of verapamil on the cardiovascular and metabolic changes during a progressive maximal exercise test were studied in 12 healthy volunteers. Each subject was treated with placebo and verapamil in 3 different dosages: 3 X 40, 3 X 80 and 3 X 120 mg X d-1 in random order. Drugs were administered for 2 days; on the 3rd day, 2 h after the last dose, a progressive exercise test until exhaustion was performed on a bicycle ergometer. No significant differences in maximal exercise capacity were found between the 4 groups of medication. VO2, VCO2, and VE were also unaffected by verapamil administration. Heart rate during exercise was reduced dose-dependently (p less than 0.001). With the highest dose of verapamil, maximal heart rate was reduced by 13 +/- 1 beats X min-1. No effect could be shown on parameters of carbohydrate and fat metabolism. Perceived exertion, estimated by the Borg scale, did not differ between placebo and the 3 medication groups. The study shows that despite a distinct reduction of heart rate, maximal exercise capacity remains unaffected after verapamil use.  相似文献   

8.
Observation of the physiological responses during exercise in a hot environment and measurement of maximal work capacity were made on eight young male subjects, ages 20--22. Exercise was performed on a bicycle ergometer at a constant work load of 450 kg . m/min at a cycling rate of 50 rpm for 30 min in a climatic chamber at 30 degree C with 70% relative humidity. The maximum work capacity was measured by bicycle ergometer exercise. Heat tolerance during exercise was assessed by the magnitude of physiological strain expressed by the combination of relative rise in rectal temperature, relative water loss and relative salt loss. Heat load during exercise was calculated using metabolic rates at rest and during exercise, assuming heat loss through the respiratory tract to be 10 percent of metabolic rate. Fairly good correlations were found between the ratio of work done to maximum work capacity and rise in rectal temperature, ratio of body weight loss to body weight and heat tolerance during exercise. Close correlations were found among relative heat load during exercise and rise in rectal temperature, relative body weight loss and heat tolerance. Heat tolerance during exercise in a hot environment correlated well to capacity of heat dissipation and maximum work capacity.  相似文献   

9.
The aim of our study was to compare crank torque profile and perceived exertion between the Monark ergometer (818 E) and two outdoor cycling conditions: level ground and uphill road cycling. Seven male cyclists performed seven tests in seated position at different pedaling cadences: (a) in the laboratory at 60, 80, and 100 rpm; (b) on level terrain at 80 and 100 rpm; and (c) on uphill terrain (9.25% grade) at 60 and 80 rpm. The cyclists exercised for 1 min at their maximal aerobic power. The Monark ergometer and the bicycle were equipped with the SRM Training System (Schoberer, Germany) for the measurement of power output (W), torque (Nxm), pedaling cadence (rpm), and cycling velocity (kmxh-1). The most important findings of this study indicate that at maximal aerobic power the crank torque profiles in the Monark ergometer (818 E) were significantly different (especially on dead points of the crank cycle) and generate a higher perceived exertion compared with road cycling conditions.  相似文献   

10.
effect of oral creatine supplementation (CR; 5 g/day) in conjunction with exercise training on physical fitness was investigated in men between 55 and 75 yr of age (n = 46). A double-blind randomized placebo-controlled (PL) trial was performed over a 6-mo period. Furthermore, a subgroup (n = 20) completed a 1-yr follow-up. The training program consisted of cardiorespiratory endurance training as well as moderate resistance training (2-3 sessions/wk). Endurance capacity was evaluated during a maximal incremental bicycle ergometer test, maximal isometric strength of the knee-extensor muscles was assessed by an isokinetic dynamometer, and body composition was assessed by hydrostatic weighing. Furthermore, in a subgroup (PL: n = 13; CR: n = 12) biopsies were taken from m. vastus lateralis to determine total creatine (TCr) content. In PL, 6 mo of training increased peak oxygen uptake rate (+16%; P < 0.05). Fat-free mass slightly increased (+0.3 kg; P < 0.05), whereas percent body fat slightly decreased (-1.2%; P < 0.05). The training intervention did not significantly change either maximal isometric strength or body weight. The responses were independent of CR. Still, compared with PL, TCr was increased by approximately 5% in CR, and this increase was closely correlated with initial muscle creatine content (r = -0.78; P < 0.05). After a 1-yr follow-up, muscle TCr was not higher in CR than in PL. Furthermore, the other measurements were not affected by CR. It is concluded that long-term creatine intake (5 g/day) in conjunction with exercise training does not beneficially impact physical fitness in men between 55 and 75 yr of age.  相似文献   

11.
The effect of fatigue as a result of a standard submaximal dynamic exercise on maximal short-term power output generated at different contraction velocities was studied in humans. Six subjects performed 25-s maximal efforts on an isokinetic cycle ergometer at five different pedaling rates (60, 75, 90, 105, and 120 rpm). Measurements of maximal power output were made under control conditions [after 6 min of cycling at 30% maximal O2 uptake (VO2max)] and after fatiguing exercise that consisted of 6 min of cycling at 90% VO2max with a pedaling rate of 90 rpm. Compared with control values, maximal peak power measured after fatiguing exercise was significantly reduced by 23 +/- 19, 28 +/- 11, and 25 +/- 11% at pedaling rates of 90, 105, and 120 rpm, respectively. Reductions in maximum peak power of 11 +/- 8 and 14 +/- 8% at 60 and 75 rpm, respectively, were not significant. The rate of decline in peak power during the 25-s control measurement was least at 60 rpm (5.1 +/- 2.3 W/s) and greatest at 120 rpm (26.3 +/- 13.9 W/s). After fatiguing exercise, the rate of decline in peak power at pedaling rates of 105 and 120 rpm decreased significantly from 21.5 +/- 9.0 and 26.3 +/- 13.9 W/s to 10.0 +/- 7.3 and 13.3 +/- 6.9 W/s, respectively. These experiments indicate that fatigue induced by submaximal dynamic exercise results in a velocity-dependent effect on muscle power. It is suggested that the reduced maximal power at the higher velocities was due to a selective effect of fatigue on the faster fatigue-sensitive fibers of the active muscle mass.  相似文献   

12.
The aim of this study was to assess the effect of strenuous endurance training on day-to-day changes in oxygen uptake (VO2) on-kinetics (time constant) at the onset of exercise. Four healthy men participated in strenuous training for 30 min.day-1, 6 days.week-1 for 3 weeks. The VO2 was measured breath-by-breath every day except Sunday at exercise intensities corresponding to the lactate threshold (LT) and the onset of blood lactate accumulation (OBLA) which were obtained before training. Furthermore, an incremental exercise test was performed to determine LT, OBLA and maximal oxygen uptake (VO2max) before and after the training period and every weekend. The 30-min heavy endurance training was performed on a cycle ergometer 5 days.week-1 for 3 weeks. Another six men served as the control group. After training, significant reductions of the VO2 time constant for exercise at the pretraining LT exercise intensity (P less than 0.05) and at OBLA exercise intensity (P less than 0.01) were observed, whereas the VO2 time constants in the control group did not change significantly. A high correlation between the decrease in the VO2 time constant and training day was observed in exercise at the pretraining LT exercise intensity (r = -0.76; P less than 0.001) as well as in the OBLA exercise intensity (r = -0.91; P less than 0.001). A significant reduction in the blood lactate concentration during submaximal exercise and in the heart rate on-kinetics was observed in the training group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of beta-adrenergic blockade on the drift in O2 consumption (VO2 drift) typically observed during prolonged constant-rate exercise was studied in 14 healthy males in moderate heat at 40% of maximal O2 consumption (VO2max). After an initial maximum cycle ergometer test to determine the subjects' control VO2max, subjects were administered each of three medications: placebo, atenolol (100 mg once daily), and propranolol (80 mg twice daily), in a randomized double-blind fashion. Each medication period was 5 days in length and was followed by a 4-day washout period. On the 3rd day of each medication period, subjects performed a maximal cycle ergometer test. On the final day of each medication period, subjects exercised at 40% of their control VO2max for 90 min on a cycle ergometer in a warm (31.7 +/- 0.3 degrees C) moderately humid (44.7 +/- 4.7%) environment. beta-Blockade caused significant (P less than 0.05) reductions in VO2max, maximal minute ventilation (VEmax), maximal heart rate (HRmax), and maximal exercise time. Significantly greater decreases in VO2max, VEmax, and HRmax were associated with the propranolol compared with the atenolol treatment. During the 90-min submaximal rides, beta-blockade significantly reduced heart rate. Substantially lower values for O2 consumption (VO2) and minute ventilation (VE) were observed with propranolol compared with atenolol or placebo. Furthermore, VO2 drift and HR drift were observed under atenolol and placebo conditions but not with propranolol. Respiratory exchange ratio decreased significantly over time during the placebo and atenolol trials but did not change during the propranolol trial.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The isometric endurance of the elbow flexors was determined in a control condition and subsequent to a maximal effort exercise bout on a cycle ergometer in seven subjects. Maximum voluntary contraction (MVC), peak rate of tension development (+dP/dt), peak rate of tension relaxation (-dP/dt), one-half contraction time, and one-half relaxation time were also measured. Each subject was tested on four occasions: two control and two experimental sessions. During the control sessions each subject held 40% of MVC to exhaustion, whereas the experimental session included a 1-min maximal effort exercise bout on a cycle ergometer 6 min prior to the isometric endurance task. Arterialized blood samples were drawn and analyzed for lactate, pH, PCO2, and PO2. Plasma bicarbonate was calculated from the Henderson-Hasselbalch equation. Subsequent to the cycle ergometer bout, blood lactate concentration rose from 0.8 to 11 mM, pH decreased from 7.43 to 7.20, PCO2 decreased from 40 to 32 Torr, and plasma bicarbonate decreased from 26 to 12 mM. When compared with the control values, no significant changes were evident for any muscle contractile properties following the cycle ergometer bout. However, isometric endurance was significantly reduced from 115.0 +/- 7.2 to 86.3 +/- 7.3 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The purpose of this investigation was to determine whether the onset of lactate acidosis is responsible for the increase in ventilatory equivalent (VE/VO2) during exercise of increasing intensity. Eight male subjects performed maximal incremental exercise tests on a cycle ergometer on two separate occasions. For the control (C) treatment, the initial work rates consisted of 4 min of unloaded pedaling (60 rpm) and 1 min of pedaling at a work rate of 30 W. Thereafter, the work rate was increased each minute by 22 W until volitional fatigue. Venous blood samples were taken before the onset of exercise and at the end of each work rate for determination of pH and lactate. Ventilatory parameters at each work rate were also monitored. Before the experimental treatment (E), the subjects performed two 3-min work bouts at high intensity (210-330 W) on the cycle ergometer in order to prematurely raise blood lactate levels and lower blood pH. The same incremental exercise test as C was then performed. The results indicated that the increase in VE/VO2 occurred at similar work rates and %VO2max although the venous H+ and lactate concentrations were significantly elevated during the E treatment. These results suggest that a decrease in the blood pH resulting from blood lactate accumulation is not responsible for the increase in VE/VO2 during incremental exercise.  相似文献   

16.
The purpose of this study was to determine the effects of varying intensities of exercise in normoxic and hypoxic environments on selected immune regulation and metabolic responses. Using a within-subjects design, subjects performed maximal tests on a cycle ergometer in both normoxic (PiO2 = 20.94%) and hypoxic (PiO2 = 14.65%) environments to determine [latin capital V with dot above]O2max. On separate occasions, subjects then performed four randomly assigned, 1-hour exercise bouts on a cycle ergometer (two each in normoxic and hypoxic environments). The hypoxic environment was created by reducing the O2 concentration of inspired air using a commercially available hypoxic chamber. The intensities for the exercise bouts were predetermined as 40 and 60% of their normoxic [latin capital V with dot above]O2max for the normoxic exercise bouts and as 40 and 60% of their hypoxic [latin capital V with dot above]O2max for the hypoxic exercise bouts. Blood samples were collected preexercise, postexercise, 15 minutes postexercise, 2 hours postexercise, and 24 hours postexercise for the determination of interleukin-1 (IL-1), tumor necrosis factor-[alpha] (TNF-[alpha]), glucose, glycerol, free fatty acids, epinephrine, norepinephrine, and cortisol. There were no significant differences (p < 0.05) between condition or intensity for IL-1 or TNF-[alpha]. Significant differences (p < 0.05) between intensities were demonstrated for epinephrine, norepinephrine, and cortisol (p < 0.05). A significant difference was identified between normoxic and hypoxic environments with respect to nonesterifed fatty acids (0.45 +/- 0.37 vs. 0.58 +/- 0.31 mEq x L-1, respectively; p = 0.012). During prolonged exercise at 40 and 60% of their respective [latin capital V with dot above]O2max values, hypoxia did not seem to dramatically alter the response of the selected immune system or metabolic markers. Exercise training that uses acute hypoxic environments does not adversely affect immune regulation system status and may be beneficial for those individuals looking to increase endurance performance.  相似文献   

17.
Effect of dichloroacetate on lactate concentration in exercising humans   总被引:1,自引:0,他引:1  
The precise mechanism responsible for the increase in plasma lactate concentration during exercise in humans is not known. We have used dichloroacetate to test the hypothesis that a limitation in pyruvate dehydrogenase activity is responsible for the rise in plasma lactate. Dichloroacetate stimulates the activity of pyruvate dehydrogenase, which is normally the regulatory enzyme in the oxidation of glucose when tissue oxygenation is adequate. Six subjects were studied twice according to a randomized, crossover protocol, involving one test with saline infusion and another with dichloroacetate infusion. Exercise load on a bicycle ergometer was increased progressively until exhaustion. Blood samples were drawn each minute throughout exercise and periodically throughout 120 min of recovery. Dichloroacetate significantly lowered the lactate concentration during exercise performed at less than 80% of the average maximal O2 consumption. The peak concentration of lactate at exhaustion was not affected by dichloroacetate treatment, but dichloroacetate did lower lactate concentration throughout recovery. These results suggest that a limitation in pyruvate dehydrogenase activity contributes to the increase in plasma lactate during submaximal exercise and recovery.  相似文献   

18.
Seven men were studied during maximal cycle ergometer exercise, to assess the effects of a single or continuous caffeine ingestion on performance and catecholamine secretion. A single blind and randomised procedure was followed with three trials at 100 +/- 5% VO2 max until exhaustion. The first trial was performed after a single administration of 250 mg of caffeine (a). The second and third trials were performed after a treatment of 5 days with 250 mg caffeine per day (continuous = c) and after placebo (p). a and c caffeine administration, 60 min prior to exercise, did not significantly change the time to exhaustion, but increased the plasma levels of both epinephrine (E) and norepinephrine (NE) at exhaustion (p less than 0.05). Single ingestion of caffeine accelerated the elimination of E and NE and increased the maximal blood lactic acid. These data suggest that both single and continuous administration of caffeine do not enhance performance during maximal cycle ergometer exercise, but do increase the exercise response of catecholamine. Only a single administration modifies the blood lactate accumulation.  相似文献   

19.
本文对以上肢训练为主的15名优秀皮划艇运动员和以下肢训练为主的14名优秀中长跑运动员在两种常规负荷方式下的无氧阈及最大吸氧量进行了测定分析,以探讨训练专一性对无氧阈测定的影响。采用踏车式功量计和活动平板方式逐级递增负荷,通过与Apple Ⅱ_E辅助联机的Jaeger EOS自动分析系统,以通气和气体交换指标的变化,无创性地测定无氧阈和最大吸氧量。结果表明,训练专一性会影响无氧阈测定结果。欲测得最高的无氧阈值,实验室测试手段就应当尽量模拟训练时的运动形式。此外,能敏感地反映出运动训练专一性适应的是无氧阈时的吸氧量绝对值(1/min),而不是无氧阈的相对值(%Vo_2max)。  相似文献   

20.
During exercise, blood levels of several hormones increase acutely. We hypothesized that consumption of a specific combination of amino acids (arginine, alanine, and phenylalanine; A-mix) may be involved in secretion of glucagon, and when combined with exercise may promote fat catabolism. Ten healthy male volunteers were randomized in a crossover study to ingest either A-mix (3 g/dose) or placebo (3 g of dextrin/dose). Thirty minutes after ingesting, each condition subsequently performed workload trials on a cycle ergometer at 50% of maximal oxygen consumption for 1 h. After oral intake of A-mix, the concentrations of plasma ketone bodies and adrenalin during and post-exercise were significantly increased. The area under the curve for glycerol and glucagon was significantly increased in the post-exercise by A-mix administration. These results suggest that pre-exercise ingestion of A-mix causes a shift of energy source from carbohydrate to fat combustion by increasing secretion of adrenalin and glucagon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号