首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapidly improving methods for glycoproteomics have enabled increasingly large-scale analyses of complex glycopeptide samples, but annotating the resulting mass spectrometry data with high confidence remains a major bottleneck. We recently introduced a fast and sensitive glycoproteomics search method in our MSFragger search engine, which reports glycopeptides as a combination of a peptide sequence and the mass of the attached glycan. In samples with complex glycosylation patterns, converting this mass to a specific glycan composition is not straightforward; however, as many glycans have similar or identical masses. Here, we have developed a new method for determining the glycan composition of N-linked glycopeptides fragmented by collisional or hybrid activation that uses multiple sources of information from the spectrum, including observed glycan B-type (oxonium) and Y-type ions and mass and precursor monoisotopic selection errors to discriminate between possible glycan candidates. Combined with false discovery rate estimation for the glycan assignment, we show that this method is capable of specifically and sensitively identifying glycans in complex glycopeptide analyses and effectively controls the rate of false glycan assignments. The new method has been incorporated into the PTM-Shepherd modification analysis tool to work directly with the MSFragger glyco search in the FragPipe graphical user interface, providing a complete computational pipeline for annotation of N-glycopeptide spectra with false discovery rate control of both peptide and glycan components that is both sensitive and robust against false identifications.  相似文献   

2.
Protein arginine (R) methylation is a post-translational modification involved in various biological processes, such as RNA splicing, DNA repair, immune response, signal transduction, and tumor development. Although several advancements were made in the study of this modification by mass spectrometry, researchers still face the problem of a high false discovery rate. We present a dataset of high-quality methylations obtained from several different heavy methyl stable isotope labeling with amino acids in cell culture experiments analyzed with a machine learning–based tool and show that this model allows for improved high-confidence identification of real methyl-peptides. Overall, our results are consistent with the notion that protein R methylation modulates protein–RNA interactions and suggest a role in rewiring protein–protein interactions, for which we provide experimental evidence for a representative case (i.e., NONO [non-POU domain–containing octamer-binding protein]–paraspeckle component 1 [PSPC1]). Upon intersecting our R-methyl-sites dataset with the PhosphoSitePlus phosphorylation dataset, we observed that R methylation correlates differently with S/T-Y phosphorylation in response to various stimuli. Finally, we explored the application of heavy methyl stable isotope labeling with amino acids in cell culture to identify unconventional methylated residues and successfully identified novel histone methylation marks on serine 28 and threonine 32 of H3. The database generated, named ProMetheusDB, is freely accessible at https://bioserver.ieo.it/shiny/app/prometheusdb.  相似文献   

3.
Imaging mass spectrometry (IMS) has developed into a powerful tool allowing label-free detection of numerous biomolecules in situ. In contrast to shotgun proteomics, proteins/peptides can be detected directly from biological tissues and correlated to its morphology leading to a gain of crucial clinical information. However, direct identification of the detected molecules is currently challenging for MALDI–IMS, thereby compelling researchers to use complementary techniques and resource intensive experimental setups. Despite these strategies, sufficient information could not be extracted because of lack of an optimum data combination strategy/software. Here, we introduce a new open-source software ImShot that aims at identifying peptides obtained in MALDI–IMS. This is achieved by combining information from IMS and shotgun proteomics (LC–MS) measurements of serial sections of the same tissue. The software takes advantage of a two-group comparison to determine the search space of IMS masses after deisotoping the corresponding spectra. Ambiguity in annotations of IMS peptides is eliminated by introduction of a novel scoring system that identifies the most likely parent protein of a detected peptide in the corresponding IMS dataset. Thanks to its modular structure, the software can also handle LC–MS data separately and display interactive enrichment plots and enriched Gene Ontology terms or cellular pathways. The software has been built as a desktop application with a conveniently designed graphic user interface to provide users with a seamless experience in data analysis. ImShot can run on all the three major desktop operating systems and is freely available under Massachusetts Institute of Technology license.  相似文献   

4.
Though social insects generally seem to have a reduced individual immunoresponse compared to solitary species, the impact of heat stress on that response has not been studied. In the honey bee, the effect of heat stress on reproductives (queens and males/drones) may also vary compared to workers, but this is currently unknown. Here, we quantified the activity of an enzyme linked to the immune response in insects and known to be affected by heat stress in solitary species: phenoloxidase (PO), in workers, queens and drones of Africanized honey bees (AHBs) experimentally subjected to elevated temperatures during the pupal stage. Additionally, we evaluated this marker in individuals experimentally infected with the entomopathogenic fungus Metarhizium anisopliae. Differences in PO activity were found between sexes and castes, with PO activity generally higher in workers and lower in reproductives. Such differences are associated with the likelihood of exposure to infection and the role of different individuals in the colony. Contrary to our expectation, heat stress did not cause an increase in PO activity equally in all classes of individual. Heat stress during the pupal stage significantly decreased the PO activity of AHB queens, but not that of workers or drones, which more frequently engage in extranidal activity. Experimental infection with Metarhizium anisopliae reduced PO activity in queens and workers, but increased it in drones. Notably, heat stressed workers lived significantly shorter after infection despite exhibiting greater PO activity than queens or drones. We suggest that this discrepancy may be related to trade-offs among immune response cascades in honey bees such as between heat shock proteins and defensin peptides used in microbial defence. Our results provide evidence for complex relationships among humoral immune responses in AHBs and suggest that heat stress could result in a reduced life expectancy of individuals.  相似文献   

5.
《Mycoscience》2020,61(5):249-258
The classification system and evolutionary history of Erysiphaceae have been studied based on the results of molecular phylogenetic analyses. However, the sequence data used for these phylogenetic estimations have been limited to the nrDNA of ca., 50 taxa, and the relationships among higher taxonomic groups are not well understood. To provide a phylogenetic overview of Erysiphaceae, we performed phylogenetic estimations based on nrDNA and MCM7 sequences obtained from ca., 270 taxa. The phylogenetic tree showed a similar topology to the trees obtained in previous studies, although the branching order between Golovinomyceteae and Phyllactinieae was different and Phyllactinieae was not monophyletic. Phyllactinieae and Erysipheae were estimated to diversify after the divergence of Golovinomyceteae, suggesting an evolutionary trend in which non-catenate conidia + endoparasitic or non-catenate conidia + ectoparasitic lineages were derived from catenate conidia + ectoparasitic lineages. Phyllactinieae was divided into a clade of Phyllactinia + Leveillula and other clade(s) consisting of Pleochaeta and Queirozia. The phylogenetic hypothesis of Erysiphaceae was updated based on the largest dataset to date, but the higher-level phylogenetic relationships remain unclear. For a more robust phylogenetic hypothesis of Erysiphaceae, further sequence data, including protein coding regions, should be added to the dataset of nrDNA sequences.  相似文献   

6.
7.
The HDL proteome has been widely recognized as an important mediator of HDL function. While a variety of HDL isolation methods exist, their impact on the HDL proteome and its associated function remain largely unknown. Here, we compared three of the most common methods for HDL isolation, namely immunoaffinity (IA), density gradient ultracentrifugation (UC), and dextran-sulfate precipitation (DS), in terms of their effects on the HDL proteome and associated functionalities. We used state-of-the-art mass spectrometry to identify 171 proteins across all three isolation methods. IA-HDL contained higher levels of paraoxonase 1, apoB, clusterin, vitronectin, and fibronectin, while UC-HDL had higher levels of apoA2, apoC3, and α-1-antytrypsin. DS-HDL was enriched with apoA4 and complement proteins, while the apoA2 content was very low. Importantly, size-exclusion chromatography analysis showed that IA-HDL isolates contained subspecies in the size range above 12 nm, which were entirely absent in UC-HDL and DS-HDL isolates. Analysis of these subspecies indicated that they primarily consisted of apoA1, IGκC, apoC1, and clusterin. Functional analysis revealed that paraoxonase 1 activity was almost completely lost in IA-HDL, despite high paraoxonase content. We observed that the elution conditions, using 3M thiocyanate, during IA resulted in an almost complete loss of paraoxonase 1 activity. Notably, the cholesterol efflux capacity of UC-HDL and DS-HDL was significantly higher compared to IA-HDL. Together, our data clearly demonstrate that the isolation procedure has a substantial impact on the composition, subclass distribution, and functionality of HDL. In summary, our data show that the isolation procedure has a significant impact on the composition, subclass distribution and functionality of HDL. Our data can be helpful in the comparison, replication and analysis of proteomic datasets of HDL.  相似文献   

8.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   

9.
A failure of bone marrow mesenchymal stem cells (BM-MSCs) to adhere to hematopoietic cells is an essential cause of the progression of chronic myelogenous leukemia and is also a cause of failure of bone marrow (BM) transplantation, but the exact mechanisms of this have not been fully elucidated. Recent studies have indicated that microRNAs (miRNAs) are contained in leukemia-derived exosomes and are involved in modulating the BM microenvironment. In this study, we found that K562 cell-derived exosomes transfer miR-711 to BM-MSCs and suppress the adhesive function of BM-MSCs. Using qRT-PCR, we also confirmed a significantly higher level of miR-711 in exosomes derived from K562 cells than in exosomes derived from parental cells. The BM-MSCs co-cultured with exosomes derived from K562 cells showed a lower adhesion rate than did controls. We further demonstrated that exosomal transfer of miR-711 induced decreased adhesive abilities by inhibiting expression of adhesion molecule CD44 in BM-MSCs. In conclusion, our study reveals that K562 cell-derived exosomal miR-711 can be transferred to BM-MSCs and weaken adhesive abilities by silencing the expression of the adhesion molecule CD44.  相似文献   

10.
Metastasis is the primary cause of death for most breast cancer (BC) patients who succumb to the disease. During the hematogenous dissemination, circulating tumor cells interact with different blood components. Thus, there are microenvironmental and systemic processes contributing to cancer regulation. We have recently published that red blood cells (RBCs) that accompany circulating tumor cells have prognostic value in metastatic BC patients. RBC alterations are related to several diseases. Although the principal known role is gas transport, it has been recently assigned additional functions as regulatory cells on circulation. Hence, to explore their potential contribution to tumor progression, we characterized the proteomic composition of RBCs from 53 BC patients from stages I to III and IV, compared with 33 cancer-free controls. In this work, we observed that RBCs from BC patients showed a different proteomic profile compared to cancer-free controls and between different tumor stages. The differential proteins were mainly related to extracellular components, proteasome, and metabolism. Embryonic hemoglobins, not expected in adults’ RBCs, were detected in BC patients. Besides, lysosome-associated membrane glycoprotein 2 emerge as a new RBCs marker with diagnostic and prognostic potential for metastatic BC patients. Seemingly, RBCs are acquiring modifications in their proteomic composition that probably represents the systemic cancer disease, conditioned by the tumor microenvironment.  相似文献   

11.
Mammalian phospholipase D (PLD) enzyme family consists of six members. Among them, PLD1/2/6 catalyzes phosphatidic acid (PA) production, while PLD3/4/5 has no catalytic activities. Deregulation of the PLD-PA lipid signaling has been associated with various human diseases including cancer. However, a comprehensive analysis of the regulators and effectors for this crucial lipid metabolic pathway has not been fully achieved. Using a proteomic approach, we defined the protein interaction network for the human PLD family of enzymes and PA and revealed diverse cellular signaling events involving them. Through it, we identified PJA2 as a novel E3 ubiquitin ligase for PLD1 involved in control of the PLD1-mediated mammalian target of rapamycin signaling. Additionally, we showed that PA interacted with and positively regulated sphingosine kinase 1. Taken together, our study not only generates a rich interactome resource for further characterizing the human PLD-PA lipid signaling but also connects this important metabolic pathway with numerous biological processes.  相似文献   

12.
BackgroundVoltage-gated sodium channels Nav1.x mediate the rising phase of action potential in excitable cells. Variations in gene SCN5A, which encodes the hNav1.5 channel, are associated with arrhythmias and other heart diseases. About 1,400 SCN5A variants are listed in public databases, but for more than 30% of these the clinical significance is unknown and can currently only be derived by bioinformatics approaches.Methods and resultsWe used the ClinVar, SwissVar, Humsavar, gnomAD, and Ensembl databases to assemble a dataset of 1392 hNav1.5 variants (370 pathogenic variants, 602 benign variants and 420 variants of uncertain significance) as well as a dataset of 1766 damaging variants in 20 human sodium and calcium channel paralogs. Twelve in silico tools were tested for their ability to predict damaging mutations in hNav1.5. The best performing tool, MutPred, correctly predicted 93% of damaging variants in our hNav1.5 dataset. Among the 86 hNav1.5 variants for which electrophysiological data are also available, MutPred correctly predicted 82% of damaging variants. In the subset of 420 uncharacterized hNav1.5 variants MutPred predicted 196 new pathogenic variants. Among these, 74 variants are also annotated as damaging in at least one hNav1.5 paralog.ConclusionsUsing a combination of sequence-based bioinformatics techniques and paralogous annotation we have substantially expanded the knowledge on disease variants in the cardiac sodium channel and assigned a pathogenic status to a number of mutations that so far have been described as variants of uncertain significance. A list of reclassified hNav1.5 variants and their properties is provided.  相似文献   

13.
Glioblastoma (GBM) is the most common and malignant primary brain tumor. The extracellular matrix, also known as the matrisome, helps determine glioma invasion, adhesion, and growth. Little attention, however, has been paid to glycosylation of the extracellular matrix components that constitute the majority of glycosylated protein mass and presumed biological properties. To acquire a comprehensive understanding of the biological functions of the matrisome and its components, including proteoglycans (PGs) and glycosaminoglycans (GAGs), in GBM tumorigenesis, and to identify potential biomarker candidates, we studied the alterations of GAGs, including heparan sulfate (HS) and chondroitin sulfate (CS), the core proteins of PGs, and other glycosylated matrisomal proteins in GBM subtypes versus control human brain tissue samples. We scrutinized the proteomics data to acquire in-depth site-specific glycoproteomic profiles of the GBM subtypes that will assist in identifying specific glycosylation changes in GBM. We observed an increase in CS 6-O sulfation and a decrease in HS 6-O sulfation, accompanied by an increase in unsulfated CS and HS disaccharides in GBM versus control samples. Several core matrisome proteins, including PGs (decorin, biglycan, agrin, prolargin, glypican-1, and chondroitin sulfate proteoglycan 4), tenascin, fibronectin, hyaluronan link protein 1 and 2, laminins, and collagens, were differentially regulated in GBM versus controls. Interestingly, a higher degree of collagen hydroxyprolination was also observed for GBM versus controls. Further, two PGs, chondroitin sulfate proteoglycan 4 and agrin, were significantly lower, about 6-fold for isocitrate dehydrogenase-mutant, compared to the WT GBM samples. Differential regulation of O-glycopeptides for PGs, including brevican, neurocan, and versican, was observed for GBM subtypes versus controls. Moreover, an increase in levels of glycosyltransferase and glycosidase enzymes was observed for GBM when compared to control samples. We also report distinct protein, peptide, and glycopeptide features for GBM subtypes comparisons. Taken together, our study informs understanding of the alterations to key matrisomal molecules that occur during GBM development. (Data are available via ProteomeXchange with identifier PXD028931, and the peaks project file is available at Zenodo with DOI 10.5281/zenodo.5911810).  相似文献   

14.
Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.  相似文献   

15.
Proteinaceous cysteine residues act as privileged sensors of oxidative stress. As reactive oxygen and nitrogen species have been implicated in numerous pathophysiological processes, deciphering which cysteines are sensitive to oxidative modification and the specific nature of these modifications is essential to understanding protein and cellular function in health and disease. While established mass spectrometry-based proteomic platforms have improved our understanding of the redox proteome, the widespread adoption of these methods is often hindered by complex sample preparation workflows, prohibitive cost of isotopic labeling reagents, and requirements for custom data analysis workflows. Here, we present the SP3-Rox redox proteomics method that combines tailored low cost isotopically labeled capture reagents with SP3 sample cleanup to achieve high throughput and high coverage proteome-wide identification of redox-sensitive cysteines. By implementing a customized workflow in the free FragPipe computational pipeline, we achieve accurate MS1-based quantitation, including for peptides containing multiple cysteine residues. Application of the SP3-Rox method to cellular proteomes identified cysteines sensitive to the oxidative stressor GSNO and cysteine oxidation state changes that occur during T cell activation.  相似文献   

16.
7-dehydrocholesterol (7-DHC) and cholesterol (CHOL) are biomarkers of Smith-Lemli-Opitz Syndrome (SLOS), a congenital autosomal recessive disorder characterized by elevated 7-DHC level in patients. Hair samples have been shown to have great diagnostic and research value, which has long been neglected in the SLOS field. In this study, we sought to investigate the feasibility of using hair for SLOS diagnosis. In the presence of antioxidants (2,6-ditert-butyl-4-methylphenol and triphenylphosphine), hair samples were completely pulverized and extracted by micro-pulverized extraction in alkaline solution or in n-hexane. After microwave-assisted derivatization with N,O-Bis(trimethylsilyl)trifluoroacetamide, the analytes were measured by GC-MS. We found that the limits of determination for 7-DHC and CHOL were 10 ng/mg and 8 ng/mg, respectively. In addition, good linearity was obtained in the range of 50–4000 ng/mg and 30–6000 ng/mg for 7-DHC and CHOL, respectively, which fully meets the requirement for SLOS diagnosis and related research. Finally, by applying the proposed method to real hair samples collected from 14 healthy infants and two suspected SLOS patients, we confirmed the feasibility of hair analysis as a diagnostic tool for SLOS. In conclusion, we present an optimized and validated analytical method for the simultaneous determination of two SLOS biomarkers using human hair.  相似文献   

17.
HDAC2, one of the class I histone deacetylase regulates epigenetic landscape through histone modification. Because HDAC2 is overexpressed in many cancers, cancer therapeutics against HDAC2 have been developed. Here we show novel mechanism of HDAC2 regulation by E3 ligase RCHY1. We found inverse correlation RCHY1 and HDAC2 levels in tumor tissue from six independent dataset using meta-analysis. Ectopic expression of RCHY1 decreased the level of HDAC2 from cancer cells including p53 wildtype, mutant and null cells. In addition, HDAC2 was increased by RCHY1 knockdown. RCHY1 directly interacts with HDAC2. Ectopic expression of wild type but not RING mutant RCHY1 increased HDAC2 levels. These data provide an evidence that RCHY1 negatively regulates HDAC2.  相似文献   

18.
Recently, it was shown that children at the onset of type 1 diabetes (T1D) have a higher proportion of oligomannose glycans in their total plasma protein N-glycome compared to their healthy siblings. The most abundant complement component, glycoprotein C3, contains two N-glycosylation sites occupied exclusively by this type of glycans. Furthermore, complement system, as well as C3, was previously associated with T1D. It is also known that changes in glycosylation can modulate inflammatory responses, so our aim was to characterize the glycosylation profile of C3 in T1D. For this purpose, we developed a novel high-throughput workflow for human C3 concanavalin A lectin affinity enrichment and subsequent LC-MS glycopeptide analysis which enables protein-specific N-glycosylation profiling. From the Danish Childhood Diabetes Register, plasma samples of 61 children/adolescents newly diagnosed with T1D and 84 of their unaffected siblings were C3 N-glycoprofiled. Significant changes of C3 N-glycan profiles were found. T1D was associated with an increase in the proportion of unprocessed glycan structures with more mannose units. A regression model including C3 N-glycans showed notable discriminative power between children with early onset T1D and their healthy siblings with area under curve of 0.879. This study confirmed our previous findings of plasma high-mannose glycan changes in a cohort of recent onset T1D cases, suggesting the involvement of C3 N-glycome in T1D development. Our C3 glycan-based discriminative model could be valuable in assessment of T1D risk in children.  相似文献   

19.
Helicobacter pylori colonizes the stomach of half of the human population. Most H. pylori are located in the mucus layer, which is mainly comprised by glycosylated mucins. Using mass spectrometry, we identified 631 glycans (whereof 145 were fully characterized and the remainder assigned as compositions) on mucins isolated from 14 Helicobacter spp.-infected and 14 Helicobacter spp.-noninfected stomachs. Only six identified glycans were common to all individuals, from a total of 60 to 189 glycans in each individual. An increased number of unique glycan structures together with an increased intraindividual diversity and larger interindividual variation were identified among O-glycans from Helicobacter spp.-infected stomachs compared with noninfected stomachs. H. pylori strain J99, which carries the blood group antigen–binding adhesin (BabA), the sialic acid–binding adhesin (SabA), and the LacdiNAc-binding adhesin, bound both to Lewis b (Leb)-positive and Leb-negative mucins. Among Leb-positive mucins, H. pylori J99 binding was higher to mucins from Helicobacter spp.-infected individuals than noninfected individuals. Statistical correlation analysis, binding experiments with J99 wt, and J99ΔbabAΔsabA and inhibition experiments using synthetic glycoconjugates demonstrated that the differences in H. pylori-binding ability among these four groups were governed by BabA-dependent binding to fucosylated structures. LacdiNAc levels were lower in mucins that bound to J99 lacking BabA and SabA than in mucins that did not, suggesting that LacdiNAc did not significantly contribute to the binding. We identified 24 O-glycans from Leb-negative mucins that correlated well with H. pylori binding whereof 23 contained α1,2-linked fucosylation. The large and diverse gastric glycan library identified, including structures that correlated with H. pylori binding, could be used to select glycodeterminants to experimentally investigate further for their importance in host–pathogen interactions and as candidates to develop glycan-based therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号