首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cockroaches dehydrated for 8 days lost nearly 50% of their haemolymph volume and approx 25% of their tissue water. Haemolymph osmolality and sodium, potassium, and chloride concentrations in the haemolymph and tissue water were all regulated within narrow limits. It is confirmed that sodium and potassium ions are sequestered within the fat body during periods of dehydration. The increase in sodium and potassium ions in the fat body is shown to arise from ionic regulation of haemolymph and other tissues. During periods of rehydration, sodium and potassium concentrations decrease in the fat body and haemolymph volume and ionic concentrations return to near original levels. A small proportion of the surplus haemolymph chloride ions is shown to be associated with the cuticle during times of water deprivation.  相似文献   

2.
Dehydration (10 days at 27 degrees C) of the Namib tenebrionid Stenocara gracilipes resulted in a rapid weight loss (17.5%), and a substantial decline in haemolymph volume (72%). Although the lipid content decreased significantly, metabolic water production was insufficient to maintain total body water (TBW). Rehydration (no food) resulted in increases in haemolymph volume, body weight (sub-normal), and TBW to normality. Haemolymph osmolality, sodium, potassium, chloride, amino acids, and sugars (trehalose and glucose), were all subject to osmoregulatory control during both dehydration and rehydration. Major osmolar effectors in this species are sodium, chloride, and amino acids, with most of the contribution to regulation of haemolymph osmolality coming from changes in the levels of these constituents. Changes in amino acid levels are not the result of interchange with soluble protein during dehydration (the possibility exists during extended rehydration, however). Despite faecal losses of sodium being low (8.2% of that removed from the haemolymph during dehydration), sodium concentrations do not return to normal during rehydration. Chloride concentrations increase supra-normally when access to water is allowed, and remain elevated throughout the rehydration period. Although faecal loss of potassium greatly exceeded the amount removed from the haemolymph (by approximately 1.8 times), haemolymph potassium levels were strongly regulated during rehydration. S. gracilipes demonstrates an exquisite capacity to regulate haemolymph osmolality under conditions of both acute water-shortage and -abundance. Together with an efficient water economy (drinking when fog-water is available, and a superb water conservation mechanism in the form of wax-bloom production), this must serve to contribute to long-term survival of this species in an otherwise harsh abode.  相似文献   

3.
The osmoregulatory and respiratory responses of male and female Smeringurus mesaensis (Vaejovidae) to prolonged desiccation were measured. No significant effect of sex on mass-loss rates (MLRs) was found. Still, females maintained their haemolymph osmolality when desiccated to 10% mass loss, whereas that of males increased significantly after loss of as little as 5% of initial mass. Females had a 3-fold larger hepatopancreas, significantly higher hepatopancreas water content and higher metabolic rates when adjusted to hepatopancreas-free dry mass. Thus, females not only store more water in the hepatopancreas but also mobilise it to the haemolymph at a higher rate during desiccation, thus maintaining haemolymph osmolality. Gas exchange rates of both males and females decrease as desiccation progresses. An initial respiratory exchange ratio (RER) of approximately 0.9 is followed by a significant increase at mass loss levels of 7.5% and higher. RER values greater than 1.0 may result from partial shift to anaerobic catabolism, which allows closure of the book lung spiracles for longer duration, thus minimising respiratory water loss. The effects of gas exchange rates on rates of water mobilisation between body compartments and water loss to the environment suggest a trade-off between maintaining osmotic stability and conserving body water stores under stressful conditions.  相似文献   

4.
The effects of long-term starvation on the body composition of the isopod Porcellio scaber (Latreille) and the collembolan Orchesella cincta (L.) were studied, by determining the body composition in starved and fed animals. A period under summer conditions (19 degrees C, 75% RH and L/D 16/8 photoperiod), was followed by a period under winter conditions (5 degrees C, 75% RH and LD 6/18 photoperiod). O. cincta was held under summer conditions for 3weeks, during which its protein and lipid content decreased, while its water content increased. In P. scaber, the same occurred during the 6weeks they were kept under summer conditions. During subsequent weeks under winter conditions, changes in cold tolerance of the animals were investigated. Cold tolerance and haemolymph osmolality were measured once a week. Starved animals had lower cold tolerance than fed ones. For P. scaber a decreased haemolymph osmolality was found in starved animals compared to fed ones. This is assumed to be caused by a combination of the consumption of carbohydrates out of the haemolymph and of protein reserves and the accumulation of body water. O. cincta appeared to be capable of osmoregulation, as haemolymph osmolality did not differ between starved and fed animals, despite differences in body water content. Decreased cold tolerance in starved animals of both species may be caused by increased water content or, more probably, by the decrease in reserves needed to produce cryoprotective substances.  相似文献   

5.
Hawes TC  Wharton DA 《Oecologia》2011,167(1):39-48
The adaptive fitness of a freeze-tolerant insect may be mediated by both endogenous and exogenous interactions. The aim of the study presented here was to characterize the freeze tolerance of alpine Tiger moth caterpillars (Metacrias huttoni) and highlight two poorly explored indices of the potential attrition of fitness: (1) downstream development and reproduction; (2) parasitism. Caterpillars survived temperatures as low as −16°C and demonstrated >90% 72-h survival after exposures to −10°C. Two-week acclimations at 5, 10, and 20°C had no effect on body water content, haemolymph osmolality or survival of equilibrium freezing, but there was a significant elevation of the temperature of crystallization (T c) in those caterpillars acclimated to 5°C. Cell viability of fat body tissue was resilient to freezing (−10 to −16°C), but midgut and tracheal cells showed significant degradation. Pupation and eclosion were unaffected by freezing at −5 or −10°C. Likewise, there were no significant differences in egg production or the proportion of eggs that hatched between control and frozen insects. By contrast, the ability of tachinid larvae to survive freezing within their hosts means that parasitism plays an important role in regulating population size. Mean parasitism of caterpillars by tachinids was 33.3 ± 7.2%. Pupation and imago emergence of tachinids after host ‘endo-nucleation’ was >75%. Eclosed adult tachinids showed a non-significant increase in the incidence of wing abnormalities in relation to low temperature exposure.  相似文献   

6.
The body temperature decrease to 24 degrees C or intraperitoneal injection of adrenaline (0.3 mg per 100 g body mass) to rats entailed the increased plasma osmolality and reduction in it of Na+ concentration. All plasma samples were ultracentrifuged. Osmolality was reduced and sodium concentration was increased in the internatant of the same samples where the maximal alterations were recorded. Experiments with the blood plasma of the lamprey which is rich under natural conditions in nonesterified fatty acids demonstrated analogous changes in osmolality and Na+ concentration in the plasma and plasma internatant. No significant changes were discovered in breast milk in which the percentage of high density lipoproteins is minimal. The authors assume that high density lipids are involved in the regulation of blood osmolality, with these lipids changing the solvent water activity and thereby lowering or raising blood plasma osmolality.  相似文献   

7.
Desiccation resistance and water balance were examined in the adults of seven trogid species, which differed both in body size and in the habitats from which they were collected. Body water contents (51–58% fresh mass) and desiccation rates at 27 °C (0.00026–0.00093 g h−1) in these species were very similar to those of unrelated, similar-sized beetles from arid habitats. The keratin beetles differed markedly from many other adult Coleoptera by virtue of their very high haemolymph osmolality and inability to regulate haemolymph osmolality, and to catabolise lipids for water production, during desiccation. Like most other insects, the xeric trogid species had lower rates of water loss and longer survival times than trogids from mesic areas. This was due both to lower rates of water loss and to the larger body size of species from the more arid areas. Because absolute body water content was higher in large beetles than in small ones, larger body size conferred higher desiccation resistance on the very large Kalahari desert species. This suggests that there may be strong selection for large body size in such insects from arid areas. Most ecological and ecophysiological investigations of geographical variation in body size, and the species-body size distribution, have focused on temperature and metabolic rate as explanatory variables. This study suggests that attention should also be given to desiccation resistance. Accepted: 29 September 1997  相似文献   

8.
The study investigates the change in osmolality and haemolymph constituents in marron Cherax cainii and yabbies Cherax destructor associated with moult stages, body weights and their feeding status. A total of 582 haemolymph samples from 5 moult stages (postmoult-AB, intermoult-C, and premoult stages – D0, D1, D2), two body weight classes (2–15 g and 61–75 g) and nutritional status were used for analysis of osmolality, protein, glucose, and ionic concentrations of potassium and chloride following the standard biochemical procedures. The haemolymph protein, glucose, potassium and chloride levels were highest at intermoult and early premoult stages, and lowest at postmoult in both crayfish species. Except protein, no significant differences were seen in analyzed parameters between various weight classes and two species. Haemolymph osmolality, protein and glucose were significantly higher in fed crayfish, whereas no variations in haemolymph potassium and chloride concentrations were observed between the fed and unfed crayfish. Maximum osmolality was recorded at 7–8 h after feeding in both crayfish species. The results showed that the biochemical changes in the haemolymph of marron and yabbies are related to moult stages, body weight and feeding and thus can be used as tools for determining suitable diets.  相似文献   

9.
Osmoregulation of the haemolymph during dehydration was investigated in a selection of temperate oniscidean isopods. Inulin tracer studies show that the haemolymph contributes approximately 69% of water losses in Porcellio scaber, significantly more than predicted from the volume of this compartment (42% of total water). Haemolymph osmolality increases linearly as a function of haemolymph dehydration but at a significantly lower rate than predicted from the change in haemolymph fluid volume. Similar results for Oniscus asellus show that both species display efficient osmoregulation until lethal dehydration. Osmoregulation is associated with significant hyporegulation of haemolymph sodium and chloride. These findings indicate that: (1) cell water is conserved at the expense of the haemolymph; and (2) haemolymph dehydration is associated with the removal of Na(+) and Cl(-) contributing to net osmoregulation. During dehydration, accumulations of both Na(+) and Cl(-) are seen in the hindgut, with significant accumulations of electrolytes also seen in the luminal fluid of the hepatopancreas. Low fluid volumes in the foregut and hindgut suggest macromolecular association as the most plausible mechanism of ion sequestration. Evidence refutes ion excretion and haemocyte sequestration as osmoregulatory mechanisms. Sequestration of Na(+) as urate salts, as shown for Periplaneta and generally assumed for other insects, is insignificant in isopods.  相似文献   

10.
The purpose of this study was to investigate the effect of swimming training on systolic blood pressure (BPs), plasma and brain vasopressin (AVP), and plasma renin activity (PRA) in spontaneously hypertensive rats (SHR) during rest and after exercise. Resting and postexercise heart rate, as well as blood parameters such as packed cell volume (PCV), haemoglobin concentration (Hb), plasma sodium and potassium concentrations ([Na+], [K+]) osmolality and proteins were also studied. Hypophyseal AVP had reduced significantly after exercise in the SHR, whereas PRA had increased significantly in the Wistar-Kyoto (WKY) strain used as normotensive controls. Plasma AVP concentration increased in both strains. By the end of the experiment, training had reduced body mass and BPs by only 10% and 6%, respectively. Maximal oxygen uptake was increased 10% and plasma osmolality 2% by training. The postexercise elevation of heart rate was not significantly attenuated by training. A statistically significant reduction in postexercise plasma osmolality (10%) and [Na+] (4%) was observed. These results suggested that swimming training reduced BPs. Plasma and brain AVP played a small role in the hypertensive process of SHR in basal conditions because changes in AVP contents did not correlate with those of BPs. Moreover, there were no differences between SHR and WKY in plasma, hypophyseal and hypothalamic AVP content in these basal conditions. Finally, during moderate exercise a haemodilution probably occurred with an increase of plasma protein content. This was confirmed by the exercise-induced increase of plasma AVP and the reduction of hypophyseal AVP content, suggesting a release of this hormone, which probably contributed to the water retention and haemodilution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of single and combined action of nickel and pesticide (diazinon) on enzymes activity (glutathione S-transferase, catalase and acetylcholinesterase) in the digestive tract, body wall and fat body as well as basic growth parameters (life span and body mass) of Spodoptera exigua were investigated under laboratory conditions. The experiment was carried out on two nickel treated groups [300 (NiI) and 900 (NiII) mg Ni kg(-1) dry weight of the culture medium] and a control group. The results showed that mortality of caterpillars in NiII group was higher (51.1%) when compare with the controls. The body mass of the caterpillars in the NiI group was higher by 20% than in the control group, and the body mass of the pupae in the NiII group was lower by 22% than in the control group. Exposure to nickel influenced AChE, GST and catalase activity in the body wall (increase up to 66%) and GI tract, while in the fat body the above-mentioned activity remained unchanged. The pesticide application caused a strong, about 70% reduction in AChE activity in GI tract, while in case of GST activity pesticide treatment resulted in multidirectional response depending on the organ. Nickel pre-treatment affects the susceptibility to pesticide, which is manifested in a lower activity of GST and catalase in the fat body (from 26 to 36%), when compare with the other experimental groups.  相似文献   

12.
Mao C  Lv J  Zhu H  Zhou Y  Chen R  Feng X  Cui Y  Wang C  Hui P  Xu F  Xu Z 《Peptides》2007,28(6):1178-1184
Although a number of studies have shown neural, hormonal, and behavioral capabilities in the control of body fluid regulation under conditions of dehydration in adults, limited information is available on the development of fetal functional abilities in response to osmotic challenge in rats. This study was performed to investigate the influence of maternal hypertonicity on fetal osmoregulatory capabilities at late gestational time in rats. Maternal and fetal plasma osmolality and blood sodium levels were determined and compared at continuous time points from 0.5 to 9h following maternal injection of hypertonic NaCl. Subcutaneous administration of hypertonic saline evoked a rise in plasma osmolality and sodium concentrations in maternal rats and fetuses associated with an up-regulation in angiotensinogen gene mRNA in the fetal liver and down-regulation of the same gene in the fetal brain. The increased levels of fetal blood osmolality and sodium were less than that in their mothers, and the fetus took less time to balance the enhanced osmolality and sodium concentrations. The results suggest that there may exist additional mechanisms in utero at near-term in protecting fetuses from hypertonic challenge. In addition, molecular results in the present study provide new data on fetal angiotensinogen gene expressed differently in the liver and brain under the same condition of prenatal salt loading, indicating osmotic signals of intracellular dehydration related to an acute increase in angiotensinogen mRNA in the fetal liver, and subsequent decrease in angiotensinogen mRNA levels in the fetal brain.  相似文献   

13.
Survival, growth, haemolymph osmolality and tissue water of Penaeus chinensis (Osbeck) juveniles (0.11 ± 0.04 g) were investigated, after they were acclimated to 10, 20, 30 and 40 ppt from 33 ppt for 14 days at 24°C, and then acclimated to 12, 18, 24 and 30°C at each salinity for 14 days. The survival of shrimp was the lowest at 10 ppt and 12°C. Growth of shrimp increased with increased temperature in the range 12–24°C, with no significant difference among four salinity levels at 18, 24 and 30°C. Haemolymph osmolality increased with increased salinity, and decreased with increased temperature. The isosmotic point computed from the linear relationship between haemolymph osmolality and medium osmolality was 664, 632, 629 and 602 mOsm/kg which is equivalent to 25.2, 24.1, 24.0 and 23.1 ppt at 12, 18, 24 and 30°C, respectively. Tissue water decreased with increased medium osmolality and haemolymph osmolality. The slope obtained from the relationship between haemolymph osmolality and medium osmolality indicated that there is an impairment of osmoregulatory ability for the P. chinensis juveniles at 12°C.  相似文献   

14.
This study describes the effects that prolonged desiccation has on osmotic and ionic balance in Carausius morosus, an insect with a rather unusual haemolymph composition (it is rich in divalent cations and has a low sodium content). After 7 days at 0% r.h., there is a 50 per cent decrease in water content of the animal. This loss is largely confined to the haemolymph, which declines in volume to about one-seventh of its previous value. In spite of these drastic changes, the osmotic concentration of the haemolymph increases only by about 20 per cent while the concentrations of the main blood ions increase by similar or smaller amounts. So, as with other insects so far examined, Carausius turns out to have very effective control of the osmotic and ionic concentrations of its internal milieu in the face of severe stress upon it.  相似文献   

15.
The effects of temperature (8–10 or 20°C) on regulation of haemolymph osmotic and ionic concentrations were investigated over a range of salinities (0–25‰) in fifth-instar larvae of the Death Valley caddisfly Limnephilus assimilis. At low temperatures, levels of chloride and sodium in the haemolymph are regulated over a wide range of salinities corresponding to the salinities at which larvae occur in nature and at which they can complete development into adults. In contrast, haemolymph osmolality is constant at low salinities (<14‰) but approaches conformity with the medium at higher salinities. High temperature reduces the larva's ability to maintain low chloride concentrations in its haemolymph and also leads to a reduction in haemolymph osmotic pressure; thus, at high temperatures ions account for more of the haemolymph osmotic concentration than at low temperatures. These data suggest that the absence of larvae from thermal pools and from all Death Valley waters in summer can be explained by the effects of high water temperatures on hydromineral regulation.  相似文献   

16.
Isabella tiger moths (Pyrrharctia isabella) overwinter as caterpillars (i.e., woolly bears) that can survive freezing at moderate subzero temperatures. We observed an increase in hemolymph osmolality for field-collected woolly bears during October (325 +/- 47 to 445 +/- 27 mOsmol/liter) and tested the influence of temperature and moisture levels on cryoprotectant production. Laboratory acclimation was done at 5 degrees C in moist conditions and at 25 degrees C acclimation in both dry and moist conditions. Body water contents were diminished by dehydration at 25 degrees C for 4 days (57 +/- 4%). Caterpillars collected in early October did not alter their hemolymph osmolality during cold acclimation, but caterpillars increased by 45% (to 647 +/- 90 mOsmol/liter) after 4 days at 5 degrees C following their collection in late October. Hemolymph composition was markedly changed in caterpillars experiencing dehydration at 25 degrees C (1042 +/- 200 mOsmol/liter; 507 +/- 225 mmol glycerol/liter), whereas caterpillars showed no change in their hemolymph composition when kept moist at 25 degrees C. Our experiments reveal that both dehydration and cold acclimation rapidly induce cryoprotectant synthesis in P. isabella caterpillars. J. Exp. Zool. 286:367-371, 2000.  相似文献   

17.
Maculinea rebeli caterpillars spend their final instar as specific parasites of colonies of the ant Myrmica schencki . This paper describes 14 experiments in which 604 caterpillars were reared with six species of Myrmica . About 40% of caterpillars died during an initial period of integration: survival was significantly greater among the larger caterpillars, in M. schencki nests, and in nests that had ant-brood present. The growth of the survivors was extremely variable. After three weeks they had gained 2–18 times their initial body weight and appeared to belong to two distinct types: fast and slow developers. Only 11% of caterpillars died during the next 37 days of growth, before a fall in temperature to below c. 14 C caused them to overwinter. By then, the caterpillars weighed from 5–90 mg (mean 22 mg).
Caterpillars of all weights lost 33% of their mass during winter, and 8% died, before rising temperatures caused growth to resume in spring. Ofthe 363 that survived winter, 44% died during a period of spring growth and 12% pupated after about seven weeks. The latter came mainly from the largest caterpillars before winter and pupal size (mean weight 81 mg) was also related to prewinter caterpillar size. The remaining 44% of post-winter caterpillars continued to grow slowly and then entered another quiescent phase and were still alive after one year in the nest. A small number of these pupated in the second year, an average of 404 days after adoption.
It is calculated that an average-sized Myrmica schencki colony of 350 workers can produce 4–5 adult butterflies; this laboratory result agrees well with field observations. The results are discussed in the light of a previous behavioural study.  相似文献   

18.
Haemolymph levels of organic and inorganic constituents were investigated in the tenebrionid Onymacris rugatipennis during dehydration and rehydration. The major osmolar effectors are sodium (26%), chloride (24%), amino acids (18%), and sugars (11%); regulation of haemolymph osmotic pressure (OP) during dehydration is effected largely by a reduction in the haemolymph content of these constituents. Changes in amino acid levels are not the result of interchanges with soluble protein. During rehydration, the main contributors to osmoregulation are sodium (26%), chloride (24%), and an increase in haemolymph solute(s) not measured in this study (31%). Of the sodium removed from the haemolymph during dehydration, 21.2% was excreted. Faecal losses of potassium during dehydration far exceeded the amounts removed from the haemolymph; however, haemolymph potassium levels were strongly regulated during rehydration. Regulatory efficiency increases as desiccation proceeds, and is greatest only when this species is severely challenged.  相似文献   

19.
This study describes the effects of desiccation and rehydration on the water content, haemolymph volume (per cent), osmolarity, and concentrations of Na, K, Mg, and Ca in the haemolymph of the lone star tick, Amblyomma americanum.The water content percentages of ‘severely desiccated’, ‘moderately’ and ‘fully hydrated’ ticks were 46·0, 52·8, and 60·3 per cent respectively. The lowest and highest of these were near the minimum and maximum possible.The haemolymph volume (per cent) of ‘severely desiccated’ ticks was regulated near the level of ‘moderately hydrated’ ticks despite significant decreases in total body water content and increases in osmolarity and concentration of sodium. Conversely, the change from ‘severely desiccated’ to ‘moderately hydrated’ ticks can be viewed as causing an increase in total body water, decrease in blood osmolarity and sodium, but little change in haemolymph volume (per cent).Most of the water taken up by ‘moderately hydrated’ ticks (while becoming ‘fully hydrated’) was added to the haemolymph. At the same time, there was little change in the blood osmolarity or haemolymph concentration of sodium. Conversely, the change of ‘fully’ to ‘moderately hydrated’ ticks was marked by a substantial loss of haemolymph volume (per cent) but little change in osmolarity and concentration of sodium.The concentration of potassium was regulated over the full range of desiccating and hydrating conditions. The lone star tick appeared less able to regulate its haemolymph concentrations of Ca and Mg; both fluctuated at the same rate, but inversely as the haemolymph volume (per cent).It appears that a carefully controlled movement of solutes (Na the predominant cation) between haemolymph and non-haemolymph tissue is intimately linked with haemolymph volume regulation and movement of water into the haemolymph during hydration.  相似文献   

20.
Adults of the bug Pyrrhocoris apterus and the beetle Alphitobius diaperinus developed chill-injury slower and survived longer when they were exposed to fluctuating thermal regimes (FTRs, where periods of low temperature were alternated with periods of higher temperature on a daily basis) rather than to constant low temperatures. The extracellular (haemolymph) concentrations of potassium ions increased with significantly higher rates in the insects exposed to constant low temperatures than in those exposed to FTRs. The concentrations of magnesium and sodium ions were maintained relatively constant or decreased slightly in both thermal regimes. The loss of body water and the increase of haemolymph osmolality contributed to, but could not fully explain, the ion concentration changes, which probably resulted also from impairing the function of an active metabolic component (ion pump) at low temperatures. This explanation was supported by observing (in P. apterus) the return toward normal [K+] during the warm "recovery" period of the FTR. Collectively, the paper stresses the importance of considering the temperature fluctuations in the experimental studies on insect cold tolerance and suggests that the positive effect of the FTR on cold tolerance may consist, at least partially, in allowing the primary ion pumping systems to re-establish the ion gradients across cell membranes and epithelia during the recovery periods at a higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号