首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of the cytochrome P450s (CYPs) may vary in the different brain cells depending on their specialization and the presence of different endogenous factors. The present study was initiated to investigate the expression and catalytic activity of the constitutive and inducible forms of CYP2E1, the major ethanol inducible CYP, in cultured rat brain neuronal and glial cells. These cells exhibited relatively two-fold higher activity of N-nitrosodimethylamine demethylase (NDMA-d) when compared with the liver enzyme. Pretreatment with ethanol revealed a significant time and concentration dependent induction in NDMA-d activity in both cell types. Western blot, immunocytochemistry and RT-PCR also indicated significant induction of CYP2E1 in the cultured brain cells. Interestingly, the neuronal cells exhibited greater magnitude of induction than the glial cells. The relatively higher degree of induction in cultures of neurons has indicated enhanced sensitivity of neurons to the inductive effects of ethanol. This enhanced induction of CYP2E1 in neuronal cells has indicated that like regional specificity, cell specificity also exists in the induction of CYP2E1 and other CYPs.  相似文献   

2.
3.
Cytochrome P450 2E1 (CYP2E1) is an enzyme of major toxicological interest because it metabolizes various drugs, precarcinogens and solvents to reactive metabolites. In this study, human and cynomolgus monkey CYP2E1 cDNAs (humCYP2E1 and monCYP2E1, respectively) were cloned, and the corresponding proteins were heterologously expressed in yeast cells to identify the functions of primate CYP2E1s. The enzymatic properties of CYP2E1 proteins were characterized by kinetic analysis of chlorzoxazone 6-hydroxylation and 4-nitrophenol 2-hydroxylation. humCYP2E1 and monCYP2E1 enzymes showed 94.3% identity in their amino acid sequences. The functional CYP content in yeast cell microsomes expressing humCYP2E1 was 38.4 pmol/mg protein. The level of monCYP2E1 was 42.7% of that of humCYP2E1, although no significant differences were statistically observed. The K(m) values of microsomes from human livers and yeast cells expressing humCYP2E1 for CYP2E1-dependent oxidation were 822 and 627 microM for chlorzoxazone 6-hydroxylation, and 422 and 514 microM for 4-nitrophenol 2-hydroxylation, respectively. The K(m) values of microsomes from cynomolgus monkey livers and yeast cells expressing monCYP2E1 were not significantly different from those of humans in any enzyme source. V(max) and V(max)/K(m) values of human liver microsomes for CYP2E1-dependent oxidation were 909 pmol/min/mg protein and 1250 nl/min/mg protein for chlorzoxazone 6-hydroxylation, and 1250 pmol/min/mg protein and 2990 nl/min/mg protein for 4-nitrophenol 2-hydroxylation, respectively. The kinetic parameter values of cynomolgus monkey livers were comparable to or lower than those of human liver microsomes (49.5-102%). In yeast cell microsomes expressing humCYP2E1, V(max) and V(max)/K(m) values for CYP2E1-dependent oxidation on the basis of CYP holoprotein level were 170 pmol/min/pmol CYP and 272 nl/min/pmol CYP for chlorzoxazone 6-hydroxylation, and 139 pmol/min/pmol CYP and 277 nl/min/pmol CYP for 4-nitrophenol 2-hydroxylation, respectively, and the kinetic parameters of monCYP2E1 exhibited similar values. These findings suggest that human and cynomolgus monkey CYP2E1 enzymes have high homology in their amino acid sequences, and that their enzymatic properties are considerably similar. The information gained in this study should help with in vivo extrapolation and to assess the toxicity of xenobiotics.  相似文献   

4.
Some of the components found in herbs may be inhibitors or inducers of cytochrome P450 enzymes, which may therefore result in undesired herb-drug interactions. As a component extracted from Radix Scutellariae, the direct effect of baicalin on cytochrome P450 has not been investigated sufficiently. In this study, we investigated concentration-dependent inhibitory effect of baicalin on the plasma protein binding and metabolism of chlorzoxazone (CZN), a model CYP2E1 probe substrate, in rats in vitro and in vivo. Animal experiment was a randomized, three-period crossover design. Significant changes in pharmacokinetic parameters of CZN such as Cmax, t1/2 and Vd were observed after treatment with baicalin in vivo (P<0.05). Cmax decreased by 25% and 33%, whereas t1/2 increased by 34% and 53%, Vd increased by 37% and 50% in 225 mg/kg and 450 mg/kg baicalin-treated rats, respectively. The AUC and CL of CZN were not affected (P>0.05). Correlation analysis showed that the changes in CZN concentrations and baicalin concentrations were in good correlation (r>0.99). In vitro experiments, baicalin decreased the formation of 6-OH-chlorzoxazone in a concentration-dependent manner and exhibited a competitive inhibition in rat liver microsomes, with a Ki value of 145.8 µM. The values of Cmax/Ki were 20 and 39 after treatment with baicalin (225 and 450 mg/kg), respectively. Protein binding experiments in vivo showed that the plasma free-fraction (fu) of CZN increased 2.6-fold immediately after baicalin treatment (450 mg/kg) and in vitro showed that baicalin (125–2500 mg/L) increased the unbound CZN from 1.63% to 3.58%. The results indicate that pharmacokinetic changes in CZN are induced by inhibitory effect of baicalin on the plasma protein binding of CZN and CYP2E1 activity.  相似文献   

5.
Summary By transfection of an expression vector of human cytochrome P450 2E1 (CYP2E1) into a human hepatoma cell line (HLE), a new cell line (HLE/2E1) that stably expresses activity of CYP2E1 has been established. The HLE/2E1 cell line expressed a higher level of CYP2E1 messenger ribonucleic acid than did the mother HLE cell line. CYP2E1 enzyme activity determined by ap-nitrophenol oxidation assay was also higher in HLE/2E1 cells than in HLE cells. In addition, the enzyme activity of the HLE/2E1 cells was increased by ethanol treatment. Exposure to acetaminophen (APAP) or buthionine sulfoximine (BSO) caused a greater decrease in viability of the HLE/2E1 cells than that of the HLE cells, as determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The cytotoxicity of APAP or BSO to HLE/2E1 cells was inhibited by the addition of ethanol or vitamin E. However, the cytotoxicity of both APAP and BSO was enhanced by 24-h preincubation of HLE/2E1 cells with ethanol. These results show that this cell line provides a useful model for studying catalytic properties of CYP2E1 and cytotoxic mechanisms of chemicals metabolized by CYP2E1.  相似文献   

6.
7.
Cytochrome P450 2E1 (CYP2E1) is highly inducible in a subset of astrocytes in vivo following ischemic or mechanical injury and in vitro by lipopolysaccharide or interleukin-1beta. In the present study, phorbol-12,13-dibutyrate (PDBu) was found to induce catalytically active CYP2E1 more than fourfold in cortical glial cultures. Little induction was seen up to 12 h, and full effects only at 21-24 h of PDBu treatment. CYP2E1 expression in PDBu-treated cells was enriched in a subset of astrocytes. The protein kinase C inhibitors, staurosporine and calphostin C, and the tyrosine kinase inhibitor genistein, but not its inactive analogue daidzein, prevented the induction of CYP2E1 by PDBu. It is suggested that CYP2E1, together with interleukin-6 and ciliary neurotrophic factor, is part of a response of astrocytes to cellular stress elicited by, e.g. cerebral injury, cytokines or phorbol ester, and mediated in part through protein kinase C.  相似文献   

8.
Ethanol-induced oxidative stress appears to play a major role in mechanisms by which ethanol causes liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway appears to be the induction of the CYP2E1 form of cytochrome P450 enzymes by ethanol. CYP2E1 is of interest because of its ability to metabolize and activate many toxicological substrates, including ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of physiological and pathophysiological conditions, and after acute and chronic alcohol treatment. CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical and hydrogen peroxide, and in the presence of iron catalysts, produces powerful oxidants such as the hydroxyl radical. This Review Article summarizes some of the biochemical and toxicological properties of CYP2E1, and briefly describes the use of HepG2 cell lines developed to constitutively express the human CYP2E1 in assessing the actions of CYP2E1. Regulation of CYP2E1 is quite complex and will be briefly reviewed. Possible therapeutic implications for treatment of alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be discussed, followed by some future directions which may help to understand the actions of CYP2E1 and its role in alcoholic liver injury.  相似文献   

9.
CYP2E1 and oxidative liver injury by alcohol   总被引:3,自引:0,他引:3  
Ethanol-induced oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway seems to be the induction of cytochrome P450 2E1 (CYP2E1) by ethanol. CYP2E1 metabolizes and activates many toxicological substrates, including ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of physiological and pathophysiological conditions and after acute and chronic alcohol treatment. CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical and hydrogen peroxide and, in the presence of iron catalysts, produces powerful oxidants such as the hydroxyl radical. This review article summarizes some of the biochemical and toxicological properties of CYP2E1 and briefly describes the use of cell lines developed to constitutively express CYP2E1 and CYP2E1 knockout mice in assessing the actions of CYP2E1. Possible therapeutic implications for treatment of alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be discussed, followed by some future directions which may help us to understand the actions of CYP2E1 and its role in alcoholic liver injury.  相似文献   

10.
Alcohol-inducible cytochrome P450 2E1 (CYP2E1) has the most rapid turnover of any member of this large family of membrane-bound oxygenases, and its degradation rate is altered profoundly by various substrates, such as ethanol and CCl(4). CYP2E1 is degraded by the ubiquitin-proteasome pathway, and because the hsp90/hsp70-based chaperone machinery is often involved in maintaining the balance between protein integrity and degradation by this pathway, we have asked whether CYP2E1 is regulated by the chaperone machinery. We show here that treatment of transformed human skin fibroblasts stably expressing CYP2E1 with the hsp90 inhibitor radicicol results in CYP2E1 degradation that is inhibited by the proteasome inhibitor lactacystin. Immunoadsorption of hsp90 from cytosol of HEK cells expressing the truncated CYP2E1(Delta3-29) yields coadsorption of CYP2E1(Delta3-29). Cotransfection of HEK cells with both the truncated CYP2E1 and the hsp70-dependent E3 ubiquitin ligase CHIP results in CYP2E1(Delta3-29) degradation, and CYP2E1(Delta3-29) co-immunoadsorbs with myc-CHIP from cytosol of cotransfected cells. Purified, bacterially expressed CYP2E1(Delta3-29) is ubiquitylated in a CHIP-dependent manner when it is incubated with a purified system containing the E1 ubiquitin activating enzyme, E2, and CHIP. CYP2E1 is the first P450 shown to be an hsp90 "client" protein that can be ubiquitylated by the hsp70-dependent E3 ubiquitin ligase CHIP. Our observations lead to a general model of how substrates, such as ethanol, can regulate the interaction of CYP2E1 with the chaperones hsp90 and hsp70 to profoundly alter enzyme turnover.  相似文献   

11.
Studies initiated to investigate the expression of cytochrome P450 2E1 (CYP2E1) in rat brain demonstrated low but detectable protein and mRNA expression in control rat brain. Though mRNA and protein expression of CYP2E1 in brain was several fold lower as compared to liver, relatively high activity of N-nitrosodimethylamine demethylase (NDMA-d) was observed in control rat brain microsomes. Like liver, pretreatment with CYP2E1 inducers such as ethanol or pyrazole or acetone significantly increased the activity of brain microsomal NDMA-d. Kinetic studies also showed an increase in the Vmax and affinity (Km) of the substrate towards the brain enzyme due to increased expression of CYP2E1 in microsomes of brain isolated from ethanol pretreated rats. In vitrostudies using organic inhibitors, specific for CYP2E1 and anti-CYP2E1 significantly inhibited the brain NDMA-d activity indicating that like liver, NDMA-d activity in rat brain is catalyzed by CYP2E1. Olfactory lobes exhibited the highest CYP2E1 expression and catalytic activity in control rats. Furthermore, several fold increase in the mRNA expression and activity of CYP2E1 in cerebellum and hippocampus while a relatively small increase in the olfactory lobes and no significant change in other brain regions following ethanol pretreatment have indicated that CYP2E1 induction maybe involved in selective sensitivity of these brain areas to ethanol induced free radical damage and neuronal degeneration.  相似文献   

12.
Dey A  Dhawan A  Kishore Seth P  Parmar D 《Life sciences》2005,77(10):1082-1093
Studies initiated to characterize cytochrome P450 2E1(CYP2E1) in freshly isolated rat blood lymphocytes revealed significant mRNA of CYP2E1 in control blood lymphocytes. RT-PCR studies have shown that as observed in liver, acute treatment of ethanol (single oral dose of 0.8 ml/kg b.wt, i.p), resulted in increase in the mRNA expression of CYP2E1 in freshly isolated rat blood lymphocytes. Western blotting studies using polyclonal antibody raised against rat liver CYP2E1 demonstrated significant immunoreactivity, comigrating with the liver isoenzyme, in freshly isolated control rat blood lymphocytes. Similar to that seen in liver, pretreatment of ethanol was found to produce an increase in the CYP2E1 isoenzyme in the blood lymphocytes. Blood lymphocytes were also found to catalyze the CYP dependent N-demethylation of N-nitrosodimethylamine (NDMA), which like in liver increased 2-3 fold following pretreatment of rats with known CYP2E1 inducers. Kinetic studies have further shown significant increase in the apparent Vmax and the affinity towards the substrate in rat blood lymphocytes indicating that as observed in liver, the increase in mRNA and protein expression following exposure to CYP2E1 inducers is associated with the increased catalytic activity of CYP2E1 in freshly isolated rat blood lymphocytes. The data indicating similarities of the blood lymphocyte CYP2E1 with the liver enzyme suggest that lymphocyte CYP2E1 levels in freshly isolated rat blood lymphocytes could be used to monitor tissue enzyme levels.  相似文献   

13.
A V79 Chinese hamster cell line was constructed for stable expression of mouse cytochrome P450 2e1 (Cyp2e1), as an addition to the existing cell battery consisting of cell lines stably expressing rat CYP2E1 and human CYP2E1 (V79 Cell Battery). The aim was to establish a cell battery that offers the in vitro possibility of investigating species-specific differences in the toxicity and metabolism of chemicals representing substrates for CYP2E1. The newly established cell line (V79m2E1) effectively expressed Cyp2e1 in the catalytically active form. The expression of catalytically active CYP2E1 in V79m2E1 cells was maintained over several months in culture, as demonstrated by Western Blotting and chlorzoxazone (CLX) 6-hydroxylase activity. The cells exhibited CLX 6-hydroxylase activity with a Km of 27.8 microM/l and Vmax of 40 pmol/mg protein/minute, compared with a Km of 28.2/28.6 microM/l and a Vmax of 130/60 pmol/mg protein/minute from V79r2E1/V79h2E1 cells. Furthermore, the CYP2E1-dependent mutagenicity of N-nitrosodimethylamine could be demonstrated in the V79m2E1 cells. Therefore, the new cell battery permits the interspecies comparison of CYP2E1-dependent toxicity and of metabolism of chemicals between humans and the two major rodent species--the rat and the mouse--that are usually used in classical toxicity studies.  相似文献   

14.
15.
Enhanced hepatic levels of cytochrome P450 2E1 (CYP2E1) may play a key role in the pathogenesis of some liver diseases because CYP2E1 represents a significant source of reactive oxygen species. Although a large fraction of CYP2E1 is located in the endoplasmic reticulum, CYP2E1 is also present in mitochondria. In this study, we asked whether ethanol, a known inducer of microsomal CYP2E1, could also increase CYP2E1 within mitochondria. Our findings indicated that ethanol increased microsomal and mitochondrial CYP2E1 in cultured rat hepatocytes and in the liver of lean mice. This was associated with decreased levels of glutathione, possibly reflecting increased oxidative stress. In contrast, in leptin-deficient obese mice, ethanol administration did not increase mitochondrial CYP2E1, nor it depleted mitochondrial glutathione, suggesting that leptin deficiency hampers mitochondrial targeting of CYP2E1. Thus, ethanol intoxication increases CYP2E1 not only in the endoplasmic reticulum but also in mitochondria, thus favouring oxidative stress in these compartments.  相似文献   

16.
R Feng  X Zhou  PM Or  JY Ma  XS Tan  J Fu  C Ma  JG Shi  CT Che  Y Wang  JH Yeung 《Phytomedicine》2012,19(12):1125-1133
Halenia elliptica D. Don is a Tibetan herb and medicinal preparations containing Halenia elliptica have been commonly used for the treatment of hepatitis B virus infection in China. The metabolism of 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) to its metabolites is mediated through cytochrome P450 enzymes. This study aimed to investigate the herb-drug interaction potential of HM-1 by studying its effects on the metabolism of model probe substrates of five major CYP450 isoforms in human liver microsomes. HM-1 showed moderate inhibitory effects on CYP1A2 (IC(50)=1.06μM) and CYP2C9 (IC(50)=3.89μM), minimal inhibition on CYP3A4 (IC(20)=11.94μM), but no inhibition on model CYP2D6 (dextromethorphan) and CYP2E1 (chlorzoxazone) probe substrates. Inhibition kinetic studies showed that the K(i) values of HM-1 on CYP1A2, CYP2C9 and CYP3A4 were 5.12μM, 2.00μM and 95.03μM, respectively. HM-1 competitively inhibited testosterone 6β-hydroxylation (CYP3A4) but displayed mixed type inhibitions for phenacetin O-deethylation (CYP1A2) and tolbutamide 4-hydroxylation (CYP2C9). Molecular docking study confirmed the inhibition modes of HM-1 on these human CYP isoforms.  相似文献   

17.
Alcohol and tobacco are frequently co-abused. Increased alcohol use and alcoholism are associated with smoking, and vice versa. Functional and/or metabolic cross-tolerance may contribute to this occurrence. This review summarizes recent studies published from our laboratory focusing on metabolic aspects of tolerance, which demonstrate that in rat, subchronic, behaviourally relevant doses of ethanol induce hepatic nicotine-metabolizing cytochrome P450 (CYP) 2B1, and that subchronically administered nicotine, at behaviourally relevant doses, induces hepatic ethanol-metabolizing CYP2E1. Increased CYP2B1 protein, mRNA and CYP2B1-mediated nicotine metabolism was observed following ethanol treatments. CYP2E1 protein and activity were induced by nicotine, but no changes were seen in levels of CYP2E1 mRNA. These data indicate that metabolic cross-tolerance may occur between nicotine and ethanol, suggesting that nicotine use may increase the elimination of ethanol, and ethanol use may increase the elimination of nicotine. Other implications, such as altered pharmacology and toxicology of drugs metabolized by these enzymes, as well as changes in pro-carcinogen and pro-toxin activation are also discussed.  相似文献   

18.
Or PM  Lam FF  Kwan YW  Cho CH  Lau CP  Yu H  Lin G  Lau CB  Fung KP  Leung PC  Yeung JH 《Phytomedicine》2012,19(6):535-544
The present study investigated the effects of Radix Astragali (RA) and Radix Rehmanniae (RR), the major components of an anti-diabetic foot ulcer herbal formula (NF3), on the metabolism of model probe substrates of human CYP isoforms, CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, which are important in the metabolism of a variety of xenobiotics. The effects of RA or RR on human CYP1A2 (phenacetin O-deethylase), CYP2C9 (tolbutamide 4-hydroxylase), CYP2D6 (dextromethorphan O-demethylase), CYP2E1 (chlorzoxazone 6-hydroxylase) and CYP3A4 (testosterone 6β-hydroxylase) activities were investigated using pooled human liver microsomes. NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.98mg/ml) and CYP3A4 (IC(50)=0.76mg/ml), with K(i) of 0.67 and 1.0mg/ml, respectively. With specific human CYP2C9 and CYP3A4 isoforms, NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.86mg/ml) and CYP3A4 (IC(50)=0.88mg/ml), with K(i) of 0.57 and 1.6mg/ml, respectively. Studies on RA or RR individually showed that RR was more important in the metabolic interaction with the model CYP probe substrates. RR dose-dependently inhibited the testosterone 6β-hydroxylation (K(i)=0.33mg/ml) while RA showed only minimal metabolic interaction potential with the model CYP probe substrates studied. This study showed that RR and the NF3 formula are metabolized mainly by CYP2C9 and/or CYP3A4, but weakly by CYP1A2, CYP2D6 and CYP2E1. The relatively high K(i) values of NF3 (for CYP2C9 and CYP3A4 metabolism) and RR (for CYP3A4 metabolism) would suggest a low potential for NF3 to cause herb-drug interaction involving these CYP isoforms.  相似文献   

19.
Aroclor 1254-induced rat liver homogenate supernatant (liver S-9) is routinely used as an exogenous metabolic activation system for the evaluation of mutagenicity of xenobiotics. The purpose of this study is to evaluate whether results obtained with Aroclor 1254-induced liver microsomes would be relevant to human. Aroclor 1254-induced and uninduced rat liver microsomes were compared to human liver microsomes in the metabolism of substrates which are known to be selectively metabolized by the major human cytochrome P450 (CYP) isoforms. The activities studied and the major CYP isoforms involved were as follows: phenacetin O-deethylation (CYP1A2); coumarin 7-hydroxylation, (CYP2A6); tolbutamide 4-hydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19); dextromethorphan O-demethylation (CYP2D6); chloroxazone 6-hydroxylation (CYP2E1); and testosterone 6beta-hydroxylation (CYP3A4). We found that both induced and uninduced rat liver microsomes were active in all the pathways studied with the exception of coumarin 7-hydroxylation. Coumarin 7-hydroxylation was observed with human liver microsomes but not the rat liver microsomes. Aroclor-1254 was found to induce all activities measured, with the exception of coumarin 7-hydroxylation. Dextromethorphan O-deethylation activity was higher in the rat liver microsomes than the human liver microsomes. Testosterone 6beta-hydroxylation activity was found to be similar between the human liver microsomes and the induced rat liver microsomes. Our results suggest that experimental data obtained with Aroclor 1254-induced rat liver microsomes may not always be relevant to human.  相似文献   

20.
A simple and sensitive method was developed for the determination of cytochrome P450 2E1 (CYP2E1) activity based on the liquid chromatography-mass spectrometry (LC-MS) analysis of 6-hydroxychlorzoxazone generated by 6-hydroxylation of chlorzoxazone under specific catalysis of CYP2E1. In the proposed method, 2-benzoxazolinone was chosen as internal standard and isopropyl ether was used as extraction solvent for sample preparation. The inter-day and intra-day precisions at low, medium and high concentrations of 6-hydroxychlorzoxazone were below 20.0%, and the LOD (S/N=3) was 0.05 ng/mL. This method was applied to analyze the CYP2E1 activity of rat in different brain regions including frontal cortex (FC), cerebellum (CB), brain stem (BS), hippocampus (HC), striatum (ST), thalamus (TH), and olfactory bulb (OB). The results confirmed that chlorzoxazone was a suitable probe for the determination of CYP2E1 activity in brain regions and samples with low content of CYP2E1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号