首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: Exposure to electromagnetic radiation (EMR) may increase breast cancer risk by inducing oxidative stress and suppressing the production of melatonin. Aim of the present review is to discuss the mechanisms and risk factors of EMR and oxidative stress-induced breast cancer, to summarize the controlled studies evaluating measures for prevention, and to conclude with evidence-based strategies for prevention.

Materials: Review of the relevant literature and results from our recent basic studies, as well as critical analyses of published systematic reviews were obtained from the Pubmed and the Science Citation Index.

Results: It has been proposed that chronic exposure to EMR may increase the risk of breast cancer by suppressing the production of melatonin; this suppression may affect the development of breast cancer either by increasing levels of circulation of estrogen or through over production of free oxygen radicals. Most epidemiological studies have also indicated overall effect of EMR exposure in premenopausal women, particularly for estrogen receptor positive breast tumors. Enhanced voltage-dependent Ca2+ current and impaired inhibitory G-protein function, and derangement of intracellular organelles with a Ca2+ buffering effect, such as endoplasmic reticulum and mitochondria have been also shown to contribute to disturbed Ca2+ signaling in breast cancer.

Conclusion: Melatonin may modulate breast cancer through modulation of enhanced oxidative stress and Ca2+ influx in cell lines. However, there is not enough evidence on increased risk of breast cancer related to EMR exposure.  相似文献   

2.
We studied the effect of low-intensity extrahigh-frequency (EHF) electromagnetic radiation (EMR) on changes of behavior phenomena in rats observed under conditions of experimentally induced tonic somatic, visceral, and acute thermal pain. Preliminary irradiation of the animals with EHF EMR was found to exert clear antinociceptive effects. Decreases in the intensity of pain reactions were observed under conditions of both single and repeated irradiation sessions. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 331–341, July–August, 2006.  相似文献   

3.
It is believed that non-ionizing electromagnetic radiation (EMR) and low-level hydrogen peroxide (H2O2) may change nonspecific resistance and modify DNA damage caused by ionizing radiation. To check this assumption, the combined effects of extremely high-frequency EMR (EHF EMR) and X-rays on induction of DNA damage in mouse whole blood leukocytes were studied. The cells were exposed to X-rays with or without preliminary treatment with EHF EMR or low-level H2O2. With the use of enhanced chemiluminescence, it was shown for the first time that pulse-modulated EHF EMR (42.2 GHz, incident power density of 0.1 mW/cm2, exposure duration of 20 min, modulation frequency of 1 Hz) induced H2O2 at a concentration of 4.6 ± 0.3 nM L?1 in physiological saline. With the use of an alkaline comet assay, it was found that the exposure of cells to the pulse-modulated EHF EMR, 25 min prior to treatment with X-rays at a dose of 4 Gy reduced the level of ionizing radiation-induced DNA damage. Continuous EHF EMR was inefficient. In turn, it was shown that low-level H2O2 (30–500 nM L?1) protected the cells against X-irradiation. Thus, the mechanisms of radiation protective effect of EHF EMR are connected with the induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated EHF EMR.  相似文献   

4.
Electric signaling pathways are important for rapid and long-distance communication within a plant. Changes in the electric potential (EP) inside plants have been observed during the propagation of electric signals. Increasing radiofrequency electromagnetic radiation (EMR) in the environment raise the question about possible effects of EMR on the EP of plants. In the present experiment, we investigated the effect of 2, 2.5, 3.5, and 5.5 GHz EMR with a maximum field intensity of 23–25 V m?1 on the EP in emergent Myriophyllum aquaticum plants. The 2 and 5.5 GHz exposures caused significant (16 and 13 %) decreases in the standard deviation of rapid fluctuations observed in the EP. The greatest change was caused by 2.5 GHz EMR (23 % increment), although it was not statistically significant. A recovery of the EP was only after 2.5 GHz EMR exposure. The temperature of the plants was not changed by the EMR exposure. These findings confirm the frequency-dependent non-thermal effects of EMR on the EP of plants.  相似文献   

5.
The dynamics of leukocyte number and functional activity of peripheral blood neutrophils under whole-body exposure of healthy mice to low-intensity extremely-high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.15 mW/cm2, 20 min daily) was studied. It was shown that the phagocytic activity of peripheral blood neutrophils was suppressed by about 50% (p < 0.01 as compared with the sham-exposed control) in 2-3 h after the single exposure to EHF EMR. The effect persisted for 1 day after the exposure, and then the phagocytic activity of neutrophils returned to the norm within 3 days. A significant modification of the leukocyte blood profile in mice exposed to EHF EMR for 5 days was observed after the cessation of exposures: the number of leukocytes increased by 44% (p < 0.05 as compared with sham-exposed animals), mostly due to an increase in the lymphocyte content. The supposition was made that EHF EMR effects can be mediated via the metabolic systems of arachidonic acid and the stimulation of adenylate cyclase activity, with subsequent increase in the intracellular cAMP level. The results indicated that the whole-body exposure of healthy mice to low-intensity EHF EMR has a profound effect on the indices of nonspecific immunity.  相似文献   

6.
Abstract

Increasing use of mobile phones in daily life with increasing adverse effects of electromagnetic radiation (EMR), emitted from mobile on some physiological processes, cause many concerns about their effects on human health. Therefore, this work was designed to study the effects of exposure to mobile phone emits 900-MHz EMR on the brain, liver and kidney of male albino rats. Thirty male adult rats were randomly divided into four groups (10 each) as follows: control group (rats without exposure to EMR), exposure group (exposed to 900-MHz EMR for 1?h/d for 60?d) and withdrawal group (exposed to 900-MHz electromagnetic wave for 1?h/d for 60?d then left for 30?d without exposure). EMR emitted from mobile phone led to a significant increase in malondialdehyde (MDA) levels and significant decrease total antioxidant capacity (TAC) levels in brain, liver and kidneys tissues. The sera activity of alanine transaminase (ALT), aspartate aminotransferase (AST), urea, creatinine and corticosterone were significantly increased (p?<?0.05), while serum catecholamines were insignificantly higher in the exposed rats. These alterations were corrected by withdrawal. In conclusion, electromagnetic field emitting from mobile phone might produce impairments in some biochemicals changes and oxidative stress in brain, liver and renal tissue of albino rats. These alterations were corrected by withdrawal.  相似文献   

7.
We address the redox homeostasis in the crystalline lens of the rabbit pups (aged 20 and 30 days) exposed to a combined effect of non-ionizing electromagnetic radiation (EMR) and hypoxia during their prenatal development. The intensity of lipid peroxidation (LPO) in the lens was in the focus of this study, being evaluated by a level of malondialdehyde (MDA), a final LPO product. It was established that prenatal exposure to 460-MHz non-ionizing EMR combined with hypoxia intensifies LPO. The obtained results allow some conclusions to be drawn about the mechanisms of antioxidant defense in relevant biological tissues. The necessity of further studies to prove the revealed tendencies is substantiated.  相似文献   

8.
We studied the effect of low-intensity extrahigh-frequency (EHF) electromagnetic radiation (EMR) on the duration of a pain behavioral reaction in rats under conditions of experimental induction of tonic pain (formalin test). The antinociceptive effect of EHF irradiation was modulated by suppression of the activity of a few neurochemical systems resulting from the blockade of receptors of opioid peptides, α-and β-adrenoreceptors, receptors of dopamine and melatonin, as well as from inhibition of serotonin synthesis. We demonstrated that all the respective neurochemical systems are to a certain extent involved in the mechanisms underlying the analgesic action of EHF EMR. Within an early phase of pain stress, functioning of the opioidergic and noradrenergic systems and the effects of melatonin play leading roles, while the activity of the serotonergic system plays such a role within the second (tonic) phase. Neirofiziologiya/Neurophysiology, Vol. 39, No. 2, pp. 165–173, March–April, 2007.  相似文献   

9.
Book Review     
Abstract

To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5?min on/10?min off, for various durations from 0.5 to 8?h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2?W/kg. A 2′,7′-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect γH2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1?h (p?p?相似文献   

10.
A variety and rate of non-cancer diseases occurred in humans as a result of chronic exposure to ionizing radiation or to electromagnetic radiation (EMR) of high and superhigh frequency have been compared. The intensity of EMR was slightly higher than a sanitary standard for population. A risk of health impairments in workers having occupational exposure to EMR was assessed on the basis of Selie's concept of development of non-specific reaction of the body to chronic stress factors (general adaptation syndrome), models of changes in the body compensatory reserves and calculations of radiation risk after severe and chronic exposure to ionizing radiation.  相似文献   

11.
A biphasic modulation of responsiveness of spleen lymphocytes to mitogens was observed in mice exposed to 2,450-MHz radiation at power densities of 5–15 mW/cm2 over various periods ranging between one and 17 days. This modulated phenomenon may be explained on the basis of 1) suppression of lymphocyte response by microwave-activated macrophages which persists throughout the entire course of radiation, and 2) concurrent progressive direct stimulation of lymphocytes which culminates around day 9 of exposure. Tumor cytotoxicity of killer lymphocytes from mice exposed to five or nine days of radiation did not appear different from sham controls. The highly proliferative hematopoietic marrow cells were sensitive to microwave radiation. Nine days of exposure to radiation (15 mW/cm2) reduced the colonyforming units of myeloid and erythroid series by 50%. This observation may offer a new and more sensitive assay for studying biological effects of electromagnetic radiation.  相似文献   

12.
The effect of extra-high frequency electromagnetic radiation (EHF EMR) on the development of organotypical culture of the spinal ganglia of a 9–10 day-old chick embryo was investigated. EMR with a wavelength of 5.6 mm and a rate of flow density <1.0, 4.0, and >100 mW/cm2 was used. The stimulating action of EMR at rate of flow density of 4.0 mW/cm2, manifested in intensification of the growth of neurites of sensory neurons and the proliferation of the peripheral glia, was observed. EHF EMR with a density >100 mW/cm2 exerted inhibitory influence. The possibility of using the stimulating effect of EHF EMR in medical practice for intensifying regeneration in pathology and after trauma of the peripheral nervous system is discussed.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 175–179, May–June, 1993.  相似文献   

13.
There are numerous reports on the effects of electromagnetic radiation (EMR) in various cellular systems. Melatonin and caffeic acid phenethyl ester (CAPE), a component of honeybee propolis, were recently found to be potent free radical scavengers and antioxidants. Mechanisms of adverse effects of EMR indicate that reactive oxygen species may play a role in the biological effects of this radiation. The present study was carried out to compare the efficacy of the protective effects of melatonin and CAPE against retinal oxidative stress due to long-term exposure to 900 MHz EMR emitting mobile phones. Melatonin and CAPE were administered daily for 60 days to the rats prior to their EMR exposure during our study. Nitric oxide (NO, an oxidant product) levels and malondialdehyde (MDA, an index of lipid peroxidation), were used as markers of retinal oxidative stress in rats following to use of EMR. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in retinal tissue. Retinal levels of NO and MDA increased in EMR exposed rats while both melatonin and CAPE caused a significant reduction in the levels of NO and MDA. Likewise, retinal SOD, GSH-Px and CAT activities decreased in EMR exposed animals while melatonin and CAPE caused a significant increase in the activities of these antioxidant enzymes. Treatment of EMR exposed rats with melatonin or CAPE increased the activities of SOD, GSH-Px and CAT to higher levels than those of control rats. In conclusion, melatonin and CAPE reduce retinal oxidative stress after long-term exposure to 900 MHz emitting mobile phone. Nevertheless, there was no statistically significant difference between the efficacies of these two antioxidants against to EMR induced oxidative stress in rat retina. The difference was in only GSH-Px activity in rat retina. Melatonin stimulated the retinal GSH-Px activity more efficiently than CAPE did.  相似文献   

14.
We measured characteristics of thermal/pain (th/p) sensitivity of Helix albescens (threshold and latency of the avoidance behavioral reaction) under conditions of the hot-plate test. As was found, weakening (shielding) of the background electromagnetic field, as well as the action of low-intensity radiations of extremalfrequency ranges, induced two-phase changes of these characteristics within a 21-day-long observation period with different manifestations and durations of the phases. Initial increase in the nociceptive sensitivity (hyperalgesia) was followed by an analgesic effect with subsequent return of the examined indices to the initial level. Low-intensity electromagnetic influences also induced modifications of the infradian rhythmics of th/p sensitivity of the molluscs; this was manifested in changes of the spectra and phase shifts of the identified rhythms and trends toward modulation of the amplitudes of these rhythmic components.  相似文献   

15.
The effects of low‐intensity extremely high‐frequency electromagnetic radiation (EHF EMR; 42.2 GHz, 0.1 mW/cm2, exposure duration 20 min) on the fatty acid (FA) composition of thymic cells and blood plasma in normal mice and in mice with peritoneal inflammation were studied. It was found that the exposure of normal mice to EHF EMR increased the content of polyunsaturated FAs (PUFAs) (eicosapentaenoic and docosapentaenoic) in thymic cells. Using a model of zymosan‐induced peritoneal inflammation, it was shown that the exposure of mice to EHF EMR significantly increased the content of PUFAs (dihomo‐γ‐linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic) and reduced the content of monounsaturated FAs (MUFAs) (palmitoleic and oleic) in thymic cells. Changes in the FA composition in the blood plasma were less pronounced and manifested themselves as an increase in the level of saturated FAs during the inflammation. The data obtained support the notion that MUFAs are replaced by PUFAs that can enter into the thymic cells from the external media. Taking into account the fact that the metabolites of PUFAs are lipid messengers actively involved in inflammatory and immune reactions, we assume that the increase in the content of n‐3 and n‐6 PUFAs in phospholipids of cellular membranes facilitates the realization of anti‐inflammatory effects of EHF EMR. Bioelectromagnetics 32:388–395, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Biological clocks are innate timing mechanisms that regulate many behavioral and physiological parameters in most organisms. In our modern life, heavy use of mobile phones (MPs) exerts a massive stress on organisms because their electromagnetic radiation usually results in varying degrees of damage to their biological systems including the biological rhythms. In the present study, the possible effects of exposure to radiofrequency–electromagnetic radiation (RF–EMR) from MPs on two characteristic circadian rhythms, locomotor activity and melatonin hormone rhythms, were investigated. Rats were exposed to RF–EMR from MPs at 900 MHz frequency (2-h/day for 2 weeks) during nighttime (20:00–22:00 h) followed by another two weeks without exposure for recovery. Locomotor activity rhythms of the control and treated groups (n = 5/group) were daily recorded using running wheels along the experimental period. For evaluating melatonin hormone rhythm, blood samples of control and treated groups (n = 12/group), were collected at the end of exposure and recovery periods, at 6-h time intervals per day (at 4:00, 10:00, 16:00, and 22:00 h). Rats exposed to RF–EMR exhibited phase shifting as well as a significant increased acrophase level in locomotor activity. Meanwhile, a significant decrease in serum melatonin levels with retaining lower amplitude rhythmicity was observed. Ceasing exposure for two weeks did not restore melatonin levels and circadian locomotor activity rhythms. It could be concluded that, under the current conditions, exposure to RF–EMR revealed disturbances in locomotor activity and melatonin level, although they maintained rhythmicity.  相似文献   

17.
The problem of resonance effects of electromagnetic radiation (EMR) on biological objects remained unsolved till now. Previously we demonstrated that low-intensity amplitude-modulated EMR of extremely high frequencies (EHF) modified the activity of mouse neutrophils in the synergistic reaction of calcium ionophore A23187 and phorbol ester PMA. The EHF EMR influence on the neutrophils was significant at the carrier frequencies of radiation within a narrow range of 41.8–42.05 GHz and at the modulation frequency of 1 Hz. The purpose of the work was the analysis of frequency-dependent modification of intracellular free calcium concentration ([Ca2+]i) by modulated EHF EMR on the basis of a special model for [Ca2+]i oscillations in the neutrophils. The calcium channels of plasma membrane were chosen as the action target of external modulation in the model. The computer simulation demonstrated the rise in [Ca2+]i at the influence of the external field with a threshold dependence on the modulation amplitude. The effect depended heavily on a sequence of delivery of the chemical and electromagnetic stimuli. The narrow-band rise in [Ca2+]i had a phase-frequency dependence. With the modulation amplitudes exceeding the threshold value, the rise in [Ca2+]i of more than 50% of the initial level was observed at the frequency of about 1 Hz and in the phase range of 0.3–2.5 radians. The results of the model analysis are in good correspondence with the experimental data obtained before, namely, with the resonance modification of the neutrophil activity at the modulation frequency of 1 Hz and with the presence of the effect only at high concentrations of calcium ionophore.  相似文献   

18.
EMS对三个玉米自交系的诱变效应分析   总被引:1,自引:0,他引:1  
EMS诱变玉米花粉是玉米化学诱变的主要技术。该研究以生产上3个常用的玉米自交系K305、21-ES、R08为材料,对其花粉用不同浓度的EMS诱变处理,探讨其EMS诱变的最佳浓度范围,明确其诱变效应。结果表明:3个自交系经过不同浓度的EMS诱变后,其结实率随着浓度的增大表现出减小的趋势,从其半致死剂量来看,EMS诱变花粉的适宜浓度范围自交系K305和R08均为0.67~1.0 mL?L-1,21-ES在1.67 mL?L-1附近。 M1代不同性状其变异幅度和变异系数与对照相比主要表现出增大的趋势,其不同性状的生物学效应在材料间表现不一致,表明性状在不同材料间对EMS的敏感性不一样,生育期表现为21-ES>K305>R08;主要株型性状表现为R08>21-ES>K305;主要雄穗性状K305和21-ES比R08敏感;主要果穗性状表现为21-ES>K305>R08。 M2代整体表现为变异谱扩大,其株高、穗位高和叶面积以及主要果穗性状的变异表现复杂,主要雄穗性状中除K305的M2株系雄穗分枝数呈双向变异外,其余M2株系整体偏向于雄穗变短,雄穗分枝数减小。该研究结果为后续研究和应用打下了基础。  相似文献   

19.
Using a model of acute zymosan‐induced paw edema in NMRI mice, we test the hypothesis that anti‐inflammatory effects of extremely high‐frequency electromagnetic radiation (EHF EMR) can be essentially modified by application of pulse modulation with certain frequencies. It has been revealed that a single exposure of animals to continuous EHF EMR for 20 min reduced the exudative edema of inflamed paw on average by 19% at intensities of 0.1–0.7 mW/cm2 and frequencies from the range of 42.2–42.6 GHz. At fixed effective carrier frequency of 42.2 GHz, the anti‐inflammatory effect of EHF EMR did not depend on modulation frequencies, that is, application of different modulation frequencies from the range of 0.03–100 Hz did not lead to considerable changes in the effect level. On the contrary, at “ineffective” carrier frequencies of 43.0 and 61.22 GHz, the use of modulation frequencies of 0.07–0.1 and 20–30 Hz has allowed us to restore the effect up to a maximal level. The results obtained show the critical dependence of anti‐inflammatory action of low‐intensity EHF EMR on carrier and modulation frequencies. Within the framework of this study, the possibility of changing the level of expected biological effect of modulated EMR by a special selection of combination of carrier and modulation frequencies is confirmed. Bioelectromagnetics 30:454–461, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Using a comet assay technique, it was shown for the first time that low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) in vivo causes oppositely directed effects on spatial organization of chromatin in cells of lymphoid organs. In 3 hrs after single whole-body exposure of NMRI mice for 20 min at 42.0 GHz and 0.15 mW/cm2, an increase by 16% (p < 0.03 as compared with control) and a decrease by 16% (p < 0.001) in fluorescence intensity of nucleoids stained with ethidium bromide were found in thymocytes and splenocytes, respectively. The fluorescence intensity of stained nucleoids in peripheral blood leukocytes was not changed after the exposure. The exposure of cells of Raji hunan lymphoid line and peripheral blood leukocytes to the EHF EMR in vitro induced a decrease in fluorescence intensity by 23% (p < 0.001) and 18% (p < 0.05), respectively. These effects can be determined by changes in a number of physiological alkali-labile sites in DNA of exposed cells. We suggested that the effects of low-intensity EHF EMR on the immune system cells are realized with the participation of neuroendocrine and central nervous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号