首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [--> 3)-beta-D-Gal f -(1 --> 5)-beta-D-Gal f-(1 -->]n --> mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [--> 5)-beta-D-Gal f-(1 -->]n --> mannan core. The mannan cores have also been investigated, and are constituted by a (1 --> 6)-alpha-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 --> 2) linked alpha-mannopyranoses.  相似文献   

2.
Protoplasts of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 were prepared using cellulose and snail enzyme with 0.6 M NaCl as osmotic stabilizer. Protoplast fusion has been performed using 35% polyethylene glycol 4.000 with 0.01 mM CaCl2. The fused protoplasts have been regenerated on regeneration medium and fusants were selected for further studies. An intracellular beta-glucosidase (EC 3.2.1.21) was purified from the protoplast fusant of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 and characterized. The enzyme was purified 138.85-fold by ammonium sulphate precipitation, DE-22 ion exchange and Sephadex G-150 gel filtration chromatography with a specific activity of 297.14 U/mg of protein. The molecular mass of the purified enzyme was determined to be about 125 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme had an optimum pH of 5.4 and temperature of 65 degrees C, respectively. This enzyme showed relatively high stability against pH and temperature and was stable in the pH range of 3.0-6.6. Na+, K+, Ca2+, Mg2+ and EDTA completely inhibited the enzyme activity at a concentration of 10 mM. The enzyme activity was accelerated by Fe3+. The enzyme activity was strongly inhibited by glucose, the end product ofglucoside hydrolysis. The K(m) and V(max) values against salicin as substrate were 0.035 mM and 1.7215 micromol min(-1), respectively.  相似文献   

3.
The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [→ 3)-β-D-Galf-(1 → 5)-β-D-Galf-(1 →] n → mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [→ 5)-β-D-Galf-(1 →] n → mannan core. The mannan cores have also been investigated, and are constituted by a (1 → 6)-α-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 → 2) linked α-mannopyranoses. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Three methods for the immobilization of the epoxide hydrolase from the fungus Aspergillus niger were tested. The highest immobilization yield (90%) and retention of activity (65%) were obtained by adsorption onto DEAE-cellulose compared to adsorption onto hydrophobic porous polypropylene and covalent linkage using Eupergit resin. The enzymatic properties of the immobilized enzyme were similar to those of the free enzyme with respect to the effect of temperature and pH on both activity and stability as well as the effect of solvent (DMF) on activity. The kinetic parameters were affected leading to lower K M(app) and higher Vm (app).  相似文献   

5.
6.
Using anion-exchange chromatography on different carriers and phenyl-Sepharose hydrophobic chromatography, five pectolytic enzymes were isolated from the culture liquid of a mutant strain of Aspergillus japonicus: two endo-polygalacturonases (I and II, 38 and 65 kD, pI5.6 and 3.3), pectin lyase (50 kD, pI3.8), and two pectinesterases (I and II) with similar molecular weights (46 and 47 kD) and the same pI(3.8). The pectinesterases apparently represent two isoforms of the same enzyme. All purified enzymes were homogenous according to SDS-PAGE and polyacrylamide gel-IEF, except for endo-polygalacturonase II that gave two bands on isoelectric focusing, but one band on electrophoresis. All enzymes had maximal activity in an acid medium (at pH 4.0-5.5). The pectin lyase and pectinesterase were stable at 40-50°C. The thermal stability of both endo-polygalacturonases was much lower (after 3 h of incubation at 30°C, endo-polygalacturonases I and II lost 40 and 10% of the activity, respectively). The activity of endo-polygalacturonases I and II towards polygalacturonic acid strongly depended on NaCl concentration (optimal concentration of the salt was 0.1-0.2 M); the enzymes were also capable of reducing the viscosity of pectin solution, but rather slowly. The pectin lyase had no activity towards polygalacturonic acid. The activity of the pectin lyase increased with increasing degree of methylation of pectins. Both endo-polygalacturonases demonstrated synergism with the pectinesterase during the hydrolysis of highly methylated pectin. On the contrary, in the mixture of pectin lyase and pectinesterase an antagonism between the two enzymes was observed.  相似文献   

7.
A non-specific aminopeptidase from Aspergillus   总被引:1,自引:0,他引:1  
A fermentation broth supernatant of the Aspergillus oryzae strain ATCC20386 contains aminopeptidase activity that releases a wide variety of amino acids from natural peptides. The supernatant was fractionated by anion exchange chromatography. Based on the primary amino acid sequence data obtained from proteins in certain fractions, polymerase chain reaction (PCR) primers were made and a PCR product was generated. This PCR product was used to screen an A. oryzae cDNA library from which the full length gene was then obtained. Fusarium venenatum and A. oryzae were used as hosts for gene expression. Transformed strains of both F. venenatum and A. oryzae over-expressed an active aminopeptidase (E.C. 3.4.11), named aminopeptidase II. The recombinant enzyme from both fungal hosts appeared as smears on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After deglycosylation of the N-linked sugars, both samples were a sharp band at approximately 56 kDa and had identical N-terminal amino acid sequences. Aminopeptidase II is a metalloenzyme with, presumably, Zn in the active site. Using various natural peptides and para-nitroanilides (pNAs) of amino acids as substrates, the aminopeptidase was found to be non-specific. Only X-Pro bonds demonstrated resistance to hydrolysis catalyzed by this aminopeptidase. The optimal enzyme activity was observed at pH 9.5 and 55 degrees C. Among amino acid pNAs, Leu-pNA appears to have the highest value of bimolecular constant of 40 min(-1) mM(-1) (k(cat) = 230 min(-1); K(m) = 5.8 mM) at pH 7.5 and 21 degrees C. Among Xaa-Ala-Pro-Tyr-Lys-amide pentapeptides, the velocity of catalytic hydrolysis at pH 7.5 and 21 degrees C was in a decreasing order: Pro, Ala, Leu, Gly and Glu.  相似文献   

8.
A beta-glucosidase (EC 3.2.1.21) from the fungus Aspergillus terreus was purified to homogeneity as indicated by disc acrylamide gel electrophoresis. Optimal activity was observed at pH 4.8 and 50 degrees C. The beta-glucosidase had K(m) values of 0.78 and 0.40 mM for p-nitrophenyl-beta-d-glucopyranoside and cellobiose, respectively. Glucose was a competitive inhibitor, with a K(i) of 3.5 mM when p-nitrophenyl-beta-d-glucopyranoside was used as the substrate. The specific activity of the enzyme was found to be 210 IU and 215 U per mg of protein on p-nitrophenyl-beta-d-glucopyranoside and cellobiose substrates, respectively. Cations, proteases, and enzyme inhibitors had little or no effect on the enzyme activity. The beta-glucosidase was found to be a glycoprotein containing 65% carbohydrate by weight. It had a Stokes radius of 5.9 nm and an approximate molecular weight of 275,000. The affinity and specific activity that the isolated beta-glucosidase exhibited for cellobiose compared favorably with the values obtained for beta-glucosidases from other organisms being studied for use in industrial cellulose saccharification.  相似文献   

9.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

10.
Aspergillus niger IFO 4066 produced two xylanases, xylanase A (XynNA) and xylanase B (XynNB), in culture medium, and these enzymes were purified. Acidophilic xylanase such as xylanase C (XynC) of white koji mold (Aspergillus kawachii IFO 4308) was not detected in A. niger cultures. However, results of Southern analysis using xynC cDNA of A. kawachii as a probe suggested that A. niger contained a gene homologous to xynC of A. kawachii. Therefore, we cloned this xylanase gene from A. niger. The predicted amino acid sequence of the cloned xylanase showed a homology to that of xynC of A. kawachii. However, a large number of amino acid substitutions were detected, especially in the N-terminal region. Both this cloned gene and xynC gene of A. kawachii had an intron at the same position in the coding region. The cloned gene was expressed in A. kawachii and a large quantity of xylanase was produced. The elution profile on an anion exchange chromatogram and the N-terminal amino acid sequence of the xylanase purified from the transformant were the same as those of XynNB. This confirmed that the cloned gene encoded XynNB.  相似文献   

11.
An organic extract was prepared from the culture medium and mycelia of the marine fungus Aspergillus stromatoides Raper & Fennell . The extract was fractionated via column chromatography, and the resulting fractions were tested for their abilities to quench the fluorescence of the calmodulin (CaM) biosensor hCaM M124C‐mBBr. From the active fraction, emodin ( 1 ) and ω‐hydroxyemodin ( 2 ) were isolated as CaM inhibitors. Anthraquinones 1 and 2 quenched the fluorescence of the hCaM M124C‐mBBr biosensor in a concentration‐dependent manner with Kd values of 0.33 and 0.76 μM , respectively. The results were compared with those of chlorpromazine (CPZ), a classical inhibitor of CaM, with a Kd value of 1.25 μM . Docking analysis revealed that 1 and 2 bind to the same pocket of CPZ. The CaM inhibitor properties of 1 and 2 were correlated with some of their reported biological properties. Citrinin ( 3 ), methyl 8‐hydroxy‐6‐methyl‐9‐oxo‐9H‐xanthene‐1‐carboxylate ( 4 ), and coniochaetone A ( 5 ) were also isolated in the present study. The X‐ray structure of 5 is reported for the first time.  相似文献   

12.
Platelets are meanwhile recognized as versatile elements within the immune system and appear to play a key role in the innate immune response to pathogens including fungi. Previous experiments revealed platelet activation by direct contact with the hyphal-associated polysaccharide galactosaminogalactan (GAG). Since secreted fungal products may also be relevant and trigger immune reactions or thrombosis, we screened culture supernatants (SN) of human-pathogenic fungi for their capacity to activate platelets. For that purpose, platelets were incubated with SN from various fungal species; platelet activation and GAG deposition on the surface of platelets were detected by flow cytometry and electron and confocal microscopy, Culture supernatants of Aspergillus fumigatus and flavus isolates were potent platelet stimulators in a dose- and time-dependent manner, while SN of other Aspergillus species and all tested mucormycete species did not significantly induce platelet activation. The capacity of culture SN to activate platelets was dependent on fungal production of GAG and deposition of secreted GAG on the platelet surface; supernatants from mucormycetes or mutants of A. fumigatus lacking GAG secretion did not affect platelet activity. These results suggest that invading fungi can stimulate platelets not only locally through direct interactions with fungal hyphae, but can also act over a certain distance through secreted GAG.  相似文献   

13.
Cellulase enzyme was produced by a selected strain of Aspergillus niger isolated from deteriorated wood and grown on different carbon sources. Filter paper gave the highest yield, followed by carboxymethyl cellulose (CMC). Cellobiose as well as glucose gave a low yield, while the yield from lactose was negligible. The concentration of filter paper cellulose that induced the maximum yield of the enzyme was 1%. Both soluble cellulose (CMC) and cotton cellulose treated with phosphoric acid (swollen) were easily hydrolyzed by cellulase; an increase in cellulase concentration lead to more hydrolysis of CMC and gave linearity in the reaction velocity. At certain concentrations of the enzyme, increase in CMC concentration, (up to 1%) resulted in more reducing sugar. Beyond this point no more hydrolysis occur.  相似文献   

14.
Two components of alpha-D-xylosidase (alpha-D-xylosidase I and II) were detected in the culture filtrate of Aspergillus nigher grown in a medium containing Sanzyme 1000-treated Glyloid 2A. The major component (alpha-D-xylosidase I) was purified to an electrophoretically pure state. The purified enzyme showed approximately 540-fold increase in specific activity over the original culture filtrate. The purified enzyme was shown to be an oligomeric protein consisting of four subunits, each of which had a molecular weight of 123,000. The enzyme showed the highest activity at pH 2.5-3.0 and 45 degrees C, and was stable in the pH range from 3.0 to 7.0 and at the temperatures up to 60 degrees C. The isoelectric point of this enzyme was pH 5.6. The purified enzyme was highly specific for p-nitrophenyl alpha-D-xylopyranoside and isoprimeverose (6-O-alpha-D-xylopyranosyl-D-glucopyranose). The apparent Km and Vmax values of the enzyme for p-nitrophenyl alpha-D-xylopyranoside and isoprimeverose were 10.5 mM and 40.8 mumol/min/mg protein, and 2.2 mM and 30 mumol/min/mg protein, respectively. The purified enzyme could also split off the alpha-D-xylopyranosyl residue on the non-reducing terminal of the backbone of oligoxyloglucans such as alpha-D-xylopyranosyl-(1----6)-beta-D-glucopyranosyl- (1----4)-[(alpha-D-xylopyranosyl-(1----6)-]-beta-D-glucopyranosyl- (1----4)-] 2-D-glucopyranose.  相似文献   

15.
Production and properties of inulinase from Aspergillus niger   总被引:5,自引:0,他引:5  
Summary A thermostable inulinase was identified in a strain of A. niger. The highest activity was observed at 50 °C (50 Lml–1) and 77% and 34% of this was retained at 60° and 65°C, respectively. pH stability, the effect of thermal stabilizers such as Propylene glycol (10%) and Sorbitol (10%) and effects of different cations were investigated. It was found that the activity was completely inhibited by Ag+ and Hg2+, while Na+ had an activator effect.  相似文献   

16.
The enzymatic properties of intracellular myrosinase produced by Aspergillus niger AKU 3302 were investigated. Maximum activity occurred at pH 6.2, and the enzyme was stable in a pH range of 7.6 to 8.0 at 5°C for 24 hr. Optimum temperature was about 34°C. Enzyme activity was stimulated by copper (I), (II), manganese (II) and cobalt (II) and was inhibited by mercury (II) and stannous (II) ions. However, metal complexing agents and DFP had little effect, while PCMB was a strong inhibitor. In contrast to plant myrosinase, this enzyme was neither activated nor inhibited by L-ascorbic acid. Glucosides and δ-gluconolactone inhibited enzyme activity but sugars were ineffective. The Km value for sinigrin was 3.3 × 10?3 M and that for p-nitrophenyl β-glucoside was 1.5 × 10?3 M. The relation between fungous myrosinases and β-glucosidase is discussed in comparison to plant myrosinase.  相似文献   

17.
Neutral proteinase I (the first peak in DEAE-cellulose chromatogrraphy) was purified from the Amberlite IRC-50 adsorbed fraction by chromatography on DEAE-cellulose and gel filtration through Sephadex G-100. It shows an optimum pH of 7.0 for milk casein. The enzyme was found to be stable in the pH range of 5.5 to 12.0. The molecular weight of the enzyme was estimated to be about 41,000 by gel filtration. The enzyme had neither aminopeptidase nor carboxypeptidase activity, but degraded carbobenzoxy-glycyl-phenyl-alanine amide, poly-l-lysine and poly-l,α-glutamic acid. The enzyme was inhibited by ethylenediaminetetraacetate, but not inhibited by diisopropylphosphorofluoridate and potato inhibitor.  相似文献   

18.
Properties of a beta-D-mannosidase from Aspergillus niger   总被引:1,自引:0,他引:1  
The beta-D-mannosidase (beta-D-mannoside mannohydrolase, EC 3.2.1.25) from culture filtrate of Aspergillus niger has been purified in large amounts by fractionation with (NH4)2SO4 and DEAE-cellulose chromatography. The removal of traces of alpha-D-galactosidase was performed on a Sepharose-epsilon-aminocaproyl-galactosylamine column. The final enzyme preparation (specific activity 188 units) has no other glycosidase activity and is judged homogeneous. The enzyme has a molecular weight of 130 000 +/- 5000 and an isoelectric point of 4.7. The amino acid composition of the enzyme is characterized by high proportion of acidic amino acids and no cysteine residues and a single chain structure of the enzyme is suggested. The enzyme shows maximum activity on p-nitrophenyl-beta-D-mannopyrano-side at pH 3.5 and at 55 degrees C. The presence of 80% of beta-sheet structure in the protein and 20.8% of monosaccharides (Gal : 1.3; Man : 7; GlcNAc : 1) could explain this relative high heat stability (up to 2 h at 55 degrees C). Enzyme activity is inhibited by mannose (Ki = 7.85 mM) and the specificity is examined.  相似文献   

19.
1) Aspergillus terreus No. 9A-1 was cultivated by a shaking method and the optimal cultural conditions for the phytase production were concluded as follows: Composition of medium; rice bran 30 g, ammonium sulfate 3 g, distilled water 1.0 liter; initial pH 5.5; shaking condition; 50 ml of medium/500 ml vol. flask; 120 oscil./min, 90 hr.

2) Phytase from Asp. terreus was purified by ammonium sulfate precipitation, acetone precipitation and chromatography on SE-Sephadex C-50 and Sephadex G-200 columns. The enzyme was purified about 520-folds with the yield of 20% from the broth. The purified enzyme was homogeneous by column chromatography, ultracentrifugation and electrophoresis.

3) This purified preparation of phytase showed following properties, a) Optimal pH for the reaction was 4.5; b) optimal temperature for the reaction was about 70°C; c) the enzyme was stable in the range of pH from 1.2 to 9.0  相似文献   

20.
Abstract A genetic transformation system for the aflatoxin-producing fungus Aspergillus parasiticus using two autonomously replicating plasmids from A. nidulans (ARp1 and pDHG25) is reported. Transformation frequencies using the plasmid pDHG25 were from 5 × 102 to 2.5 × 104 transformants per 106 viable protoplasts and μg DNA. The stability of the plasmids in the transformants was also studied. This transformation system offers a new opportunity to clone genes related to aflatoxin production using appropriate aflatoxin-defective mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号