首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We had developed a conditional Laminin α 1 knockout-mouse model (Lama1cko) bypassing embryonic lethality of Lama1 deficient mice to study the role of this crucial laminin chain during late developmental phases and organogenesis. Here, we report a strong defect in the organization of the adult cerebellum of Lama1cko mice. Our study of the postnatal cerebellum of Lama1cko animals revealed a disrupted basement membrane correlated to an unexpected excessive proliferation of granule cell precursors in the external granular layer (EGL). This was counteracted by a massive cell death occurring between the postnatal day 7 (P7) and day 20 (P20) resulting in a net balance of less cells and a smaller cerebellum. Our data show that the absence of Lama1 has an impact on the Bergmann glia scaffold that aberrantly develops. This phenotype is presumably responsible for the observed misplacing of granule cells that may explain the overall perturbation of the layering of the cerebellum and an aberrant folia formation.  相似文献   

2.
Laminins are the major glycoproteins present in all basement membranes. Previously, we showed that perlecan is present during human development. Although an overview of mRNA-expression of the laminin β1 and β2 chains in various developing fetal organs is already available, a systematic localization of the laminin β1 and β2 chains on the protein level during embryonic and fetal human development is missing. Therefore, we studied the immunohistochemical expression and tissue distribution of the laminin β1 and β2 chains in various developing embryonic and fetal human organs between gestational weeks 8 and 12. The laminin β1 chain was ubiquitously expressed in the basement membrane zones of the brain, ganglia, blood vessels, liver, kidney, skin, pancreas, intestine, heart and skeletal system. Furthermore, the laminin β2 chain was present in the basement membrane zones of the brain, ganglia, skin, heart and skeletal system. The findings of this study support and expand upon the theory that these two laminin chains are important during human development.  相似文献   

3.
Cell adhesive peptides have been widely applied for therapeutic drugs, drug delivery systems, and biomaterials. Previously, we identified various cell adhesive sequences in the G domains of four laminin α chains (α2-α5) by the systematic soluble peptide screening. We also identified five cell-binding sequences in the laminin α1 chain G domain using synthetic peptide-polystyrene beads. Here, we re-screened cell adhesive peptides in the laminin α1 chain G domain by the systematic soluble peptides screening. The 110 soluble peptides were evaluated for their cell adhesive activities using human fibrosarcoma HT1080 cells and human dermal fibroblasts. Fourteen peptides were newly identified as a cell adhesive. Additionally, four peptides (AG22: SSFHFDGSGYAM, AG42: TFDLLRNSYGVRK, AG76: HQNQMDYATLQLQ, AG86: LGGLPSHYRARNI) promoted integrin-mediated cell adhesion. Further, neurite outgrowth activity with rat pheochromocytoma PC12 cells was evaluated and two peptides (AG20: SIGLWNYIEREGK, AG26: SPNGLLFYLASNG) were newly identified for neurite outgrowth activity. These results suggested that the systematic soluble peptides screening approach is an accurate and powerful strategy for finding biologically active sequences. The active sequences newly identified here could be involved in the biological functions of this domain. The active peptides are useful for evaluating molecular mechanisms of laminin-receptor interactions and for developing cell adhesive biomaterials.  相似文献   

4.
5.
The polymerization of laminin into a cell-associated network--a key step in basement membrane assembly--is mediated by the laminin amino-terminal (LN) domains at the tips of the three short arms of the laminin αβγ-heterotrimer. The crystal structure of a laminin α5LN-LE1-2 fragment shows that the LN domain is a β-jelly roll with several elaborate insertions that is attached like a flower head to the stalk-like laminin-type epidermal growth factor-like tandem. A surface loop that is strictly conserved in the LN domains of all α-short arms is required for stable ternary association with the β- and γ-short arms in the laminin network.  相似文献   

6.
The laminin α2 chain is specifically expressed in the basement membrane surrounding muscle and nerve. We screened biologically active sequences in the mouse laminin N-terminal region of α2 chain using 216 soluble peptides and three recombinant proteins (rec-a2LN, rec-a2LN+, and rec-a2N) by both the peptide- or protein-coated plate and the peptide-conjugated Sepharose bead assays. Ten peptides showed cell attachment activity in the plate assay, and 8 peptides were active in the bead assay. Seven peptides were active in the both assays. Five peptides promoted neurite outgrowth with PC12 cells. To clarify the cellular receptors, we examined the effects of heparin and EDTA on cell attachment to 11 active peptides. Heparin inhibited cell attachment to 10 peptides, and EDTA significantly affected only A2-8 peptide (YHYVTITLDLQQ, mouse laminin α2 chain, 117-128)-mediated cell attachment. Cell attachment to A2-8 was also specifically inhibited by anti-integrin β1 and anti-integrin α2β1 antibodies. These results suggest that A2-8 promotes an integrin α2β1-mediated cell attachment. The rec-a2LN protein, containing the A2-8 sequence, bound to integrin α2β1 and cell attachment to rec-a2LN was inhibited by A2-8 peptide. Further, alanine substitution analysis of both the A2-8 peptide and the rec-a2LN+ protein revealed that the amino acids Ile-122, Leu-124, and Asp-125 were involved in integrin α2β1-mediated cell attachment, suggesting that the A2-8 site plays a functional role as an integrin α2β1 binding site in the LN module. These active peptides may provide new insights on the molecular mechanism of laminin-receptor interactions.  相似文献   

7.
K. Müntz 《Phytochemistry》1977,16(10):1491-1494
The pod mesophyll of field beans accumulates large amounts of starch during stage 1 of embryogenesis, which is later utilized during stage 2. The activity of starch degradation in the pod is under metabolic control of the enclosed seeds. Changes in the isoenzyme pattern of α-amylase and not starch phosphorylase coincide with the beginning of the starch degradation period in the pods. Mesophyll cells of the pods contain the same α-amylase isoenzymes as the endocarp but exhibit a higher α-amylase activity that parallels the much higher starch content of this tissue in comparison to the endocarp. Regulation of starch breakdown may be mediated at least in part by the formation of a special α-amylase isoenzyme.  相似文献   

8.
We have previously identified and characterised the collagen type II-binding integrin subunit alpha10, which is a member of the beta1 family and is expressed by chondrocytes. In the present study, we examined the expression of the alpha10 integrin in various mouse tissues. Immunohistochemical analysis of alpha10 on cryosections from 3-day-old mice demonstrated that alpha10beta1 was present in the hyaline cartilage of joints, vertebral column, trachea and bronchi. In addition, alpha10 was found in the ossification groove of Ranvier, in the aortic and atrioventricular valves of the heart and in the fibrous tissue lining skeletal muscle and ligaments. Overall, the distribution was distinct from that of the collagen-binding integrins alpha1beta1 and alpha2beta1. We also found that alpha10beta1was the dominating collagen-binding integrin during cartilage development. Expression of alpha10 appeared at embryonic day 11.5 (E11.5) at the same time as chondrogenesis started as judged by collagen type II expression. At E13.5, alpha10 was present throughout the anlage as well as in the perichondrium and in mesenchyme just outside the perichondrium, where it localised with collagen type I. Four weeks after birth, alpha10 was prominent both at the articular surface and in the growth plate. In conclusion, we found that integrin alpha10beta1 was a major collagen-binding integrin during cartilage development and in mature hyaline cartilage. In addition, we found that alpha10beta1 was present in some fibrous tissues.  相似文献   

9.
Laminins, a multifunctional protein family of extracellular matrix, interact with various types of integrin. Here, integrin-mediated cell adhesive peptides have been systematically screened in the laminin α4 and α5 chain G domain peptide library consisting of 211 peptides by both the peptide-coated plastic plates and peptide-conjugated Sepharose bead assays using human dermal fibroblasts. Thirteen peptides promoted cell spreading and the activity was specifically inhibited by EDTA. Cell attachment to 11 peptides was inhibited by anti-integrin β1 antibody. Additionally, cell attachment to the A5G81 (AGQWHRVSVRWG) and A5G84 (TWSQKALHHRVP) peptides was specifically inhibited by anti-integrin α3 and α6 antibodies. These results suggest that the A5G81 and A5G84 peptides promote integrin α3β1- and α6β1-mediated cell attachment. Further, most of the integrin-mediated cell adhesive peptides are located in the loop regions in the G domains, suggesting that structure is important for the integrin specific recognition. Integrin binding peptides are useful for understanding laminin functions and have a potential to use for biomaterials and drug development.  相似文献   

10.
The N-terminal domains VI plus V (62 kDa) and V alone (43 kDa) of the laminin α1 chain were obtained as recombinant products and shown to be folded into a native form by electron microscopy and immunological assays. Domain VI alone, which corresponds to an LN module, did not represent an autonomously folding unit in mammalian cells, however. Fragment α1VI/V, but not fragment α1V, bound to purified α1β1 and α2β1 integrins, to heparin, and to heparan sulfate-substituted domains I and V of perlecan. This localized the binding activities to the LN module, which contains two basic sequences suitable for heparin interactions.  相似文献   

11.
The biological activities of the laminin α2 chain LG4–5 module result from interactions with cell surface receptors, such as heparan sulfate proteoglycans and α-dystroglycan. In this study, heparin and α-dystroglycan binding sequences were identified using 42 overlapping synthetic peptides from the LG4–5 module and using recombinant LG4–5 protein (rec-α2LG4–5). Physiological activities of the active peptides were also examined in explants of submandibular glands. Heparin binding screens showed that the A2G78 peptide (GLLFYMARINHA) bound to heparin and prevented its binding to rec-α2LG4–5. Furthermore, alanine substitution of the arginine residue in the A2G78 site on rec-α2LG4–5 decreased heparin binding activity. When α-dystroglycan binding of the peptides was screened, two peptides, A2G78 and A2G80 (VQLRNGFPYFSY), bound α-dystroglycan. A2G78 and A2G80 also inhibited α-dystroglycan binding of rec-α2LG4–5. A2G78 and A2G80 specifically inhibited end bud formation of submandibular glands in culture. These results suggest that the A2G78 and A2G80 sites play functional roles as heparan sulfate- and α-dystroglycan-binding sites in the module. These peptides are useful for elucidating molecular mechanisms of heparan sulfate- and/or α-dystroglycan-mediated biological functions of the laminin α2 chain.  相似文献   

12.
13.
Summary The specific activity of thirteen genetic variants of the protease inhibitor 1-antitrypsin (1-AT) has been determined. Elastase inhibitor activity was assayed using protein substrates (elastin and gelatin) and the synthetic substrate N-tert-butoxycarbonyl-l-alanine p-nitrophenyl ester. The synthetic substrate -N-benzoyl-dl-arginine p-nitroanilide HCl was used to assay trypsin inhibitor activity. The specific activity of 1-AT was expressed as serum inhibition/immunological concentration of 1-AT. Sera of PI type FM had reduced specific activity with elastase, but not with trypsin. With the possible exception of MP, no other variants showed significant differences in specific activity when compared with normal PI type M.This research was supported by the Medical Research Council of Canada (No. MA 5426)  相似文献   

14.
In order to study the role of cell–matrix interactions in mammary gland function, temporal changes in α2β1 integrin, the major receptor for collagen and the influence of β-oestradiol on its level and distribution in rat mammary gland at different stages of development were studied. The level of α2β1 integrin determined by ELISA, was found to be high during different days of pregnancy, while in the lactating stage, it was significantly reduced. By immunocytochemical analysis, α2β1 integrin was found to be localized towards the luminal side of acinar cells, both in the virgin and midpregnant stage, while it was not detected in the lactating stage. The possible role of hormones in modulating the level of integrin was examined in both in vitro and in vivo experiments using β-oestradiol. Supplementing β-oestradiol to isolated mammary epithelial cells from both virgin and lactating glands caused a concentration dependent increase in the incorporation of [35S]methionine into α2β1 integrin associated with the cells. Administration of β-oestradiol to virgin and lactating glands caused about 1.4–4-fold increase in the level of α2 integrin, indicating that upregulation of integrin during pregnancy may be due to oestrogen and as the oestrogen level falls during lactating phase, downregulation of α2β1 integrin occurs. Treatment with β-oestradiol also resulted in the appearance of α2β1 integrin in the acinar region of the lactating tissue, while in the untreated controls no staining for integrin was seen. These results indicate that oestrogen, apart from directly affecting the cellular activity, can influence mammary tissue function by affecting cell–ECM interactions through the modulation of integrin receptors for matrix proteins.  相似文献   

15.
The unique capability of rice (Oryza sativa L.) seedlings to grow under anoxic conditions may result in part from their ability to express -amylase and maintain the supply of sugar needed for energy metabolism. Previous studies have demonstrated that under aerobic conditions the Amy1 and Amy2 subfamily genes are regulated primarily by phytohormones while the Amy3 subfamily genes are induced during sugar starvation. The expression patterns for these -amylase genes were considerably different in anoxic vs. aerobic rice seedlings. The level of total -amylase mRNA under anoxic conditions was decreased in aleurone layers while it increased in the embryo. Anoxic conditions greatly diminished the expression of the Amy1A gene in aleurone. Conversely, expression of many Amy3 subfamily genes was up-regulated and prolonged in embryo tissues under anoxic conditions.  相似文献   

16.
17.
18.
The adult cerebellum is composed of several distinct cell types with well defined developmental origins. However, the molecular mechanisms that govern the generation of these cell types are only partially resolved. Wnt/β-catenin signalling has a wide variety of roles in generation of the central nervous system, though the specific activity of this pathway during cerebellum development is not well understood. Here, we present data that delineate the spatio-temporal specific pattern of Wnt/β-catenin signaling during mouse cerebellum development between E12.5 and P21. Using the BAT-gal Wnt/β-catenin reporter mouse, we found that Wnt/β-catenin activity is present transiently at the embryonic rhombic lip but not at later stages during the expansion of cell populations that arise from there. At late embryonic and early postnatal stages, Wnt/β-catenin activity shifts to the cerebellar ventricular zone and to cells arising from this germinal centre. Subsequently, the expression pattern becomes progressively restricted to Bergmann glial cells, which show expression of the reporter at P21. These results indicate a variety of potential functions for Wnt/β-catenin activity during cerebellum development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号