首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of nitric oxide (NO) synthase activity by L-NG-Nitroarginine (NO2Arg) in brain preparations is not reversed by dialysis and is enhanced by prolonged preincubation of NO2Arg with the enzyme. By contrast, the weaker inhibition by NO2Arg of macrophage NO synthase is fully reversible. NO2Arg inhibits NO synthase activity in the brain after i.p. administration of 5 or 50 mg/kg. This in vivo inhibition also appears to be irreversible. The potent in vivo inhibition of central NO synthase by NO2Arg may facilitate studies of the physiologic function of NO as a neuronal messenger.  相似文献   

2.
He H  Zhan J  He L  Gu M 《Protoplasma》2012,249(3):483-492
Nitric oxide (NO) is a ubiquitous signal molecule involved in multiple plant responses to environmental stress. In the recent years, the regulating role of NO on heavy metal toxicity in plants is realized increasingly, but knowledge of NO in alleviating aluminum (Al) toxicity is quite limited. In this article, NO homeostasis between its biosynthesis and elimination in plants is presented. Some genes involved in NO/Al network and their expressions are also introduced. Furthermore, the role of NO in Al toxicity and the functions in Al tolerance are discussed. It is proposed that Al toxicity may disrupt NO homeostasis, leading to endogenous NO concentration being lower than required for root elongation in plants. There are many evidences that pointed out that the exogenous NO treatments improve Al tolerance in plants through activating antioxidative capacity to eliminate reactive oxygen species. Most of the work with respect to NO regulating pathways and functions still has to be done in the future.  相似文献   

3.
As a cellular signaling molecule, nitric oxide (NO) is widely conserved from microorganisms, such as bacteria, yeasts, and fungi, to higher eukaryotes including plants and mammals. NO is mainly produced by NO synthase (NOS) or nitrite reductase (NIR) activity. There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis based on the balance between NO synthesis and degradation is important for the regulation of its physiological functions because an excess level of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but NO and its signaling have been poorly understood due to the lack of mammalian NOS orthologs in the genome. Even though the activities of NOS and NIR have been observed in yeast cells, the gene encoding NOS and the NO production mechanism catalyzed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain an intracellular redox balance following endogenous NO production, exogenous NO treatment, or environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed here. Such investigations into NO signaling are essential for understanding the NO-dependent genetic and physiological modulations. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signaling may be a potential target for the construction and engineering of industrial yeast strains.  相似文献   

4.
Plasma nitrite (NO2-) and nitrate (NO3-) are the stable end-products of endogenous nitric oxide (NO) metabolism. NO is present in the exhaled air of humans, but it is not clear if exhaled NO may be an indicator of the systemic endogenous NO production. The aims of the study were to determine the levels of exhaled NO and plasma NO2-/NO3- in healthy term and preterm newborns, and to assess if exhaled NO correlates with plasma NO2-/NO3- at birth. After the stabilization of the newborn, we measured by chemiluminescence the concentration of NO in the mixed expired breath of 133 healthy newborns. Measurement of exhaled NO was repeated after 24 and 48 hours. Plasma NO2-/NO3- levels at birth were measured by the Griess reaction. NO concentrations were 8.9 (CI 8.1-9.8) parts per billion (ppb), 7.7 (CI 7.2-8.3) ppb and 9.0 (CI 8.4-9.6) ppb at birth, 24 and 48 hours, respectively. At birth, exhaled NO was inversely correlated with gestational age (p=0.008) and birth weight (p<0.001). Plasma NO2-/NO3- level was 27.30 (CI 24.26-30.34) micromol/L. There was no correlation between exhaled NO and plasma NO2-/NO3- levels at birth (p=0.88). We speculate that the inverse correlation between exhaled NO and gestational age and birth weight may reflect a role of NO in the postnatal adaptation of pulmonary circulation. At birth, exhaled NO does not correlate with plasma NO2-/NO3- and does not seem to be an index of the systemic endogenous NO production.  相似文献   

5.
Steady-state gradients of NO within tissues and cells are controlled by rates of NO synthesis, diffusion, and decomposition. Mammalian cells and tissues actively decompose NO. Of several cell lines examined, the human colon CaCo-2 cell produces the most robust NO consumption activity. Cellular NO metabolism is mostly O2-dependent, produces near stoichiometric NO3-, and is inhibited by the heme poisons CN-, CO (K(I) approximately 3 microM), phenylhydrazine, and NO and the flavoenzyme inhibitor diphenylene iodonium. NO consumption is saturable by O2 and NO and shows apparent K(M) values for O2 and NO of 17 and 0.2 microM, respectively. Mitochondrial respiration, O2*-, and H2O2 are neither sufficient nor necessary for O2-dependent NO metabolism by cells. The existence of an efficient mammalian heme and flavin-dependent NO dioxygenase is suggested. NO dioxygenation protects the NO-sensitive aconitases, cytochrome c oxidase, and cellular respiration from inhibition, and may serve a dual function in cells by limiting NO toxicity and by spatially coupling NO and O2 gradients.  相似文献   

6.
Nitric oxide mediates gravitropic bending in soybean roots   总被引:18,自引:0,他引:18       下载免费PDF全文
Hu X  Neill SJ  Tang Z  Cai W 《Plant physiology》2005,137(2):663-670
Plant roots are gravitropic, detecting and responding to changes in orientation via differential growth that results in bending and reestablishment of downward growth. Recent data support the basics of the Cholodny-Went hypothesis, indicating that differential growth is due to redistribution of auxin to the lower sides of gravistimulated roots, but little is known regarding the molecular details of such effects. Here, we investigate auxin and gravity signal transduction by demonstrating that the endogenous signaling molecules nitric oxide (NO) and cGMP mediate responses to gravistimulation in primary roots of soybean (Glycine max). Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip. Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric, with NO concentrating in the lower side of the root. Removal of NO with an NO scavenger or inhibition of NO synthesis via NO synthase inhibitors or an inhibitor of nitrate reductase reduced both NO accumulation and gravitropic bending, indicating that NO synthesis was required for the gravitropic responses and that both NO synthase and nitrate reductase may contribute to the synthesis of the NO required. Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips. Gravistimulation, NO, and auxin also induced the accumulation of cGMP, a response inhibited by removal of NO or by inhibitors of guanylyl cyclase, compounds that also reduced gravitropic bending. Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor, and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP, a cell-permeable analog of cGMP. These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots.  相似文献   

7.
Nitric oxide (NO) is a central mediator of various physiological events in the gastrointestinal tract. The influence of the intestinal microflora for NO production in the gut is unknown. Bacteria could contribute to this production either by stimulating the mucosa to produce NO, or they could generate NO themselves. Using germ-free and conventional rats, we measured gaseous NO directly in the gastrointestinal tract and from the luminal contents using a chemiluminescence technique. Mucosal NO production was studied by using an NO synthase (NOS) inhibitor, and to evaluate microbial contribution to the NO generation, nitrate was given to the animals. In conventional rats, luminal NO differed profoundly along the gastrointestinal tract with the greatest concentrations in the stomach [>4,000 parts per billion (ppb)] and cecum (approximately 200 ppb) and lower concentrations in the small intestine and colon (< or =20 ppb). Cecal NO correlated with the levels in incubated luminal contents. NOS inhibition lowered NO levels in the colon, without affecting NO in the stomach and in the cecum. Gastric NO increased greatly after a nitrate load, proving it to be a substrate for NO generation. In germ-free rats, NO was low (< or =30 ppb) throughout the gastrointestinal tract and absent in the incubated luminal contents. NO also remained low after a nitrate load. Our results demonstrate a pivotal role of the intestinal microflora in gastrointestinal NO generation. Distinctly compartmentalized qualitative and quantitative NO levels in conventional and germ-free rats reflect complex host microbial cross talks, possibly making NO a regulator of the intestinal eco system.  相似文献   

8.
Nitric oxide (NO) is a highly reactive substance with short lifetime. In conditions of a living organism NO can be bound by the complexes used for transport and intracellular storage of NO. The main biological forms of NO store include S-nitrosothiols and dinitrosyl iron complexes capable of interconversion. The NO store formed by these complexes in the vascular wall, on the one hand, provides for protection from excessive free NO after its overproduction and, on the other hand, can be an additional NO source when it is deficient. Apparently, the efficiency of NO storage is genetically determined and corresponds to the inherited level of NO production in the organism. Controlled modulation of formation and dissociation of the NO store is a promising trend for further investigation.  相似文献   

9.
Microbial production and uptake of nitric oxide in soil   总被引:3,自引:0,他引:3  
Abstract Fluxes of NO from three different soils have been studied by a flow-through system in the laboratory as a function of gas flow rate, of NO mixing ratio, and of incubation conditions. The dependence of net NO fluxes on gas flow rates and on NO mixing ratios could be described by a simple model of simultaneous NO production and NO uptake. By using this model, rates of gross NO production, rate constants of NO uptake, and NO compensation mixing ratios could be determined as function of the soil type and the incubation condition. Gross NO production rates were one to two orders of magnitude larger under anaerobic than under aerobic conditions. NO uptake rate constants, on the other hand, were only 5–8 times larger so that the compensation mixing ratios of NO were in a range of about 1600–2200 ppbv under anaerobic and of about 50–600 ppbv under aerobic conditions. The different soils exhibited similar NO uptake rate constants, but the gross NO production rate and compensation mixing ratio was significantly higher in an acidic (pH 4.7) sandy clay loam than in other less acidic soils. Experiments with autoclaved soil samples showed that both NO production and NO uptake was mainly due to microbial metabolism.  相似文献   

10.
Possible modulation of Brewer's yeast-induced nociception by centrally (icv) administered nitric oxide (NO) modulators, viz., NO synthase (NOS) inhibitors, NO precursor, donors, scavengers and co-administration of NO donor (SIN-1) with NOS inhibitor (L-NAME) and NO scavenger (Hb) was investigated in rats. Administration of NOS inhibitors and NO scavenger Hb increased the pain threshold capacity significantly, whereas NO donors SIN-1, SNP and NO precursor L-arginine were found to be hyperalgesic. D-arginine, the inactive isomer of L-arginine and methylene blue, inhibitor of soluble guanylate cyclase failed to alter the nociceptive behaviour in rats. Co-administration of SIN-1 with L-NAME and Hb found to increase the nociceptive threshold. The results indicate, that centrally administered NO modulators alter the nociceptive transmission induced by Brewer's yeast in rats.  相似文献   

11.
Measurements of nitric oxide (NO) pulmonary diffusing capacity (DL(NO)) multiplied by alveolar NO partial pressure (PA(NO)) provide values for alveolar NO production (VA(NO)). We evaluated applying a rapidly responding chemiluminescent NO analyzer to measure DL(NO) during a single, constant exhalation (Dex(NO)) or by rebreathing (Drb(NO)). With the use of an initial inspiration of 5-10 parts/million of NO with a correction for the measured NO back pressure, Dex(NO) in nine healthy subjects equaled 125 +/- 29 (SD) ml x min(-1) x mmHg(-1) and Drb(NO) equaled 122 +/- 26 ml x min(-1) x mmHg(-1). These values were 4.7 +/- 0.6 and 4.6 +/- 0.6 times greater, respectively, than the subject's single-breath carbon monoxide diffusing capacity (Dsb(CO)). Coefficients of variation were similar to previously reported breath-holding, single-breath measurements of Dsb(CO). PA(NO) measured in seven of the subjects equaled 1.8 +/- 0.7 mmHg x 10(-6) and resulted in VA(NO) of 0.21 +/- 0.06 microl/min using Dex(NO) and 0.20 +/- 0.6 microl/min with Drb(NO). Dex(NO) remained constant at end-expiratory oxygen tensions varied from 42 to 682 Torr. Decreases in lung volume resulted in falls of Dex(NO) and Drb(NO) similar to the reported effect of volume changes on Dsb(CO). These data show that rapidly responding chemiluminescent NO analyzers provide reproducible measurements of DL(NO) using single exhalations or rebreathing suitable for measuring VA(NO).  相似文献   

12.
Nitric oxide (NO(*)) is a diffusible regulatory molecule involved in a wide range of physiological and pathological events. At the tissue level, a local and temporary increase in NO(*) concentration is translated into a cellular signal. From our current knowledge of biological synthesis and decay, the kinetics and mechanisms that determine NO(*) concentration dynamics in tissues are poorly understood. Generally, NO(*) mediates its effects by stimulating (e.g., guanylate cyclase) or inhibiting (e.g., cytochrome oxidase) transition metal-containing proteins and by post-translational modification of proteins (e.g., formation of nitrosothiol adducts). The borderline between the physiological and pathological activities of NO(*) is a matter of controversy, but tissue redox environment, supramolecular organization and compartmentalisation of NO(*) targets are important features in determining NO(*) actions. In brain, NO(*) synthesis in the dependency of glutamate NMDA receptor is a paradigmatic example; the NMDA-subtype glutamate receptor triggers intracellular signalling pathways that govern neuronal plasticity, development, senescence and disease, suggesting a role for NO(*) in these processes. Measurements of NO(*) in the different subregions of hippocampus, in a glutamate NMDA receptor-dependent fashion, by means of electrochemical selective microsensors illustrate the concentration dynamics of NO(*) in the sub-regions of this brain area. The analysis of NO(*) concentration-time profiles in the hippocampus requires consideration of at least two interrelated issues, also addressed in this review. NO(*) diffusion in a biological medium and regulation of NO(*) activity.  相似文献   

13.
The end products of nitric oxide (NO) metabolism in human organism, i.e. anions, nitrites (NO2) and nitrates (NO3), are excreted predominantly (95%) via urine. The quantity of these products in urine is an adequate index of NO synthesis in human organism. We measured the quantities of of NO2 and NO3 excreted during of monoviral hepatitis A, B, C, D and in the course of mixed viral hepatic infections, which were caused by the above mentioned viruses. The hyperexcretion of NO2 and NO3 was higher and longer during hepatitis C and D versus hepatitis B, and during the latter versus hepatitis A. The inability of NO to stop the infection may be caused by low sensitivity of the viruses to NO and/or by local low concentration of NO in the site of inflammation.  相似文献   

14.
一氧化氮(NO)是一种气体信号分子,具有调节血管张力、引起肿瘤细胞凋亡和减缓植物成熟等功能。最新研究发现,NO可以通过限制菌体对抗生素药物的摄入等保护细菌,但高浓度的NO对细菌又具有杀灭作用;与此同时NO通过双分子系统、c-di-GMP和群体感应等影响细菌生物膜的形成,但细菌种类不同NO的影响效果也不同。本文主要对NO在细菌抗菌机理和生物膜形成的分子作用等进行综述,同时,也对NO研究发展的新方向进行了展望。  相似文献   

15.
Metabolism of nitric oxide in soil and denitrifying bacteria   总被引:1,自引:0,他引:1  
Abstract Production and consumption of NO was measured under anaerobic conditions in a slightly alkaline and an acidic soil as well as in pure cultures of denitrifying Pseudomonas aeruginosa, P. stutzeri, P. fluorescens, Paracoccus denitrificans, Azospirillum brasilense , and A. lipoferum . Growing bacterial cultures reduced nitrate and intermediately accumulated nitrite, NO, N2O, but not NO2. Addition of formaldehyde inhibited NO production and NO consumption. In the presence of acetylene NO was reduced to N2O. Net NO release rates in denitrifying bacterial suspensions and in soil samples decreased hyperbolically with increasing NO up to mixing ratios of about 5 ppmv NO. This behaviour could be modelled by assuming a constant rate of NO production simultaneously with a NO consumption activity that increased with NO until V max was reached. The data allowed calculation of the gross rates ( P ) of NO production, of the rate constants ( k ), V max and K m of NO consumption, and of the NO compensation mixing ratio ( m c). In soil, P was larger than V max resulting in net NO release even at high NO mixing ratios unless P was selectively inhibited by chlorate + chlorite or by aerobic incubation conditions. In bacteria, V max was somewhat larger than P resulting in net NO uptake at high NO mixing ratios. Both P and V max were dependent on the supply of electron donor (e.g. glucose). Both in soil (aerobic or anaerobic) and in pure culture, the K m values of NO consumption were in a similar low range of about 0.5–6.0 nM. Anaerobic soil and denitrifying bacteria exhibited m c values of 1.6–2.1 ppmv NO and 0.2–4.0 ppmv NO, respectively.  相似文献   

16.
Nitric oxide in physiology and pathology   总被引:8,自引:0,他引:8  
Summary Nitric oxide (NO) can exert a multitude of biological actions. NO, formed froml-arginine by a calcium-dependent enzyme (NO synthase) plays a key physiological role in regulating vascular tone and integrity. NO, formed by a constitutive neuronal isoform of NO synthase, likewise plays an important neuromodulator role. By contrast, high levels of NO can be generated following induction of a calcium-independent isoform of NO synthase. This excessive production of NO can provoke hypotension such as that observed in septic shock, and can exert cytotoxic actions leading to tissue injury and inflammation. Selective inhibitors of this inducible isoform thus have therapeutic potential in a number of disease states.  相似文献   

17.
Formate uncoupled proton translocation in formate-grown Wolinella succinogenes cells supplied with N-oxides as terminal electron acceptors. In suspensions containing KSCN (but not valinomycin), H2 supported proton translocation when NO3-, NO2-, and NO were provided as oxidants. H+/N-oxide ratios were 4.77 for NO3-, 2.49 for NO2-, and 1.75 for NO. KSCN inhibits N2O reduction thus precluding use of N2O as oxidant. Repeated exposure of cells to NO inhibited their ability to translocated protons with NO as oxidant but only slightly diminished and did not eliminate their capacity for NO3(-)- or NO2(-)-dependent proton flux. Substituting reduced benzyl viologen for H2 and measuring proton uptake provided results consistent with an extramembranal location for the N- oxide reductases. The uncoupler, carbonyl cyanide m-chlorophenylhydrazone, collapsed proton gradients, permitted uptake of 2 mol H+/mol NO3- or NO2-, but unaccountably inhibited NO3- reduction by 50% while leaving H+ uptake stoichiometry of the cells unaffected.  相似文献   

18.
Prostaglandin E(1) (PGE(1)) reduces cell death in experimental and clinical manifestations of liver dysfunction. Nitric oxide (NO) has been shown to exert a protective or noxious effect in different experimental models of liver injury. The aim of the present study was to investigate the role of NO during PGE(1) protection against D-galactosamine (D-GalN) citotoxicity in cultured hepatocytes. PGE(1) was preadministered to D-GalN-treated hepatocytes. The role of NO in our system was assessed by iNOS inhibition and a NO donor. Different parameters related to apoptosis and necrosis, NO production such as nitrite+nitrate (NO(x)) release, iNOS expression, and NF-kappaB activation in hepatocytes were evaluated. The inhibition of iNOS reduced apoptosis induced by D-GalN in hepatocytes. PGE(1) protection against D-GalN injury was associated with its capacity to reduce iNOS expression and NO production induced by D-GalN. Nevertheless, iNOS inhibition showed that protection by PGE(1) was also mediated by NO. Low concentrations of a NO donor reduced D-GalN injury with a decrease in the extracellular NO(x) concentration. High concentrations of the NO donor enhanced NO(x) concentration and increased cell death by D-GalN. The present study suggests that low NO production induced by PGE(1) preadministration reduces D-GalN-induced cell death through its capacity to reduce iNOS expression and NO production caused by the hepatotoxin.  相似文献   

19.
Polymorphonuclear neutrophils (PMN) obtained from carrageenin-stimulated peritoneal cavities of rats, but not blood PMN, spontaneously produced nitric oxide (NO) when incubated in vitro. Incubation of the cells with the NO synthase inhibitors, L-imino-ethyl-L-ornithine (L-NIO) or N(G)-monomethyl-L-arginine (L-NMMA), inhibited NO production. This inhibition could be reversed by L-arginine. Incubation of PMN with lipopolysaccharide (LPS) failed to enhance NO production. Pretreatment of the rats with dexamethasone (DEXA) prior to carrageenin injection or incubation of PMN with the glucocorticoid in vitro partially inhibited the spontaneous release of NO. On the other hand, when PMN obtained from DEXA pretreated rats were incubated in vitro with DEXA, NO synthase activity and hence NO generation were almost abolished. A similar inhibition was also observed following the addition of L-NIO or cycloheximide to cultures of carrageenin-elicited PMN. The NO production by PMN did not appear to be related to cell viability or apoptosis. Indeed, neither the blockade of NO generation by L-NIO nor the incubation of the neutrophils with a NO donor, S-nitroso-acetylpenicillamine (SNAP) modified the pattern of LDH release or DNA fragmentation. In summary, it appears that PMN migration triggers a continuous NO synthesis, and that NO produced by these cells is not related to their apoptosis.  相似文献   

20.
Alveolar nitric oxide (NO) concentration (Fa(NO)), increasingly considered in asthma, is currently interpreted as a reflection of NO production in the alveoli. Recent modeling studies showed that axial molecular diffusion brings NO molecules from the airways back into the alveolar compartment during exhalation (backdiffusion) and contributes to Fa(NO). Our objectives in this study were 1) to simulate the impact of backdiffusion on Fa(NO) and to estimate the alveolar concentration actually due to in situ production (Fa(NO,prod)); and 2) to determine actual alveolar production in stable asthma patients with a broad range of NO bronchial productions. A model incorporating convection and diffusion transport and NO sources was used to simulate Fa(NO) and exhaled NO concentration at 50 ml/s expired flow (Fe(NO)) for a range of alveolar and bronchial NO productions. Fa(NO) and Fe(NO) were measured in 10 healthy subjects (8 men; age 38 +/- 14 yr) and in 21 asthma patients with stable asthma [16 men; age 33 +/- 13 yr; forced expiratory volume during 1 s (FEV(1)) = 98.0 +/- 11.9%predicted]. The Asthma Control Questionnaire (Juniper EF, Buist AS, Cox FM, Ferrie PJ, King DR. Chest 115: 1265-1270, 1999) assessed asthma control. Simulations predict that, because of backdiffusion, Fa(NO) and Fe(NO) are linearly related. Experimental results confirm this relationship. Fa(NO,prod) may be derived by Fa(NO,prod) = (Fa(NO) - 0.08.Fe(NO))/0.92 (Eq. 1). Based on Eq. 1, Fa(NO,prod) is similar in asthma patients and in healthy subjects. In conclusion, the backdiffusion mechanism is an important determinant of NO alveolar concentration. In stable and unobstructed asthma patients, even with increased bronchial NO production, alveolar production is normal when appropriately corrected for backdiffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号