首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
世界卫生组织已宣布新型冠状病毒感染(coronavirus disease 2019,COVID-19)的爆发为全球大流行。中和抗体和小分子抑制剂在预防及治疗COVID-19中发挥重要作用。尽管已开发出了多种中和抗体以及疫苗,但是随着病原体严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)的不断变异,现有的抗体及疫苗面临巨大的挑战。小分子抑制剂主要通过干扰病毒与宿主的结合以及病毒自身的复制达到消灭病毒以及抑制病毒感染的作用,并且对SARS-CoV-2突变株具有广谱抑制作用,是当前研究的热点。近年来国内外学者对SARS-CoV-2的小分子抑制剂做了大量的研究工作,本文根据中和抗体识别的抗原表位以及小分子抑制剂的作用机制分别对用于预防及治疗COVID-19的中和抗体和小分子抑制剂进行综述,讨论其研究现状,并展望小分子抑制剂的应用前景,以期为该领域的进一步研究提供参考。  相似文献   

2.
3.
The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.  相似文献   

4.
The emergence of SARS-CoV-2 variants of concern and repeated outbreaks of coronavirus epidemics in the past two decades emphasize the need for next-generation pan-coronaviral therapeutics. Drugging the multi-functional papain-like protease (PLpro) domain of the viral nsp3 holds promise. However, none of the known coronavirus PLpro inhibitors has been shown to be in vivo active. Herein, we screened a structurally diverse library of 50,080 compounds for potential coronavirus PLpro inhibitors and identified a noncovalent lead inhibitor F0213 that has broad-spectrum anti-coronaviral activity, including against the Sarbecoviruses (SARS-CoV-1 and SARS-CoV-2), Merbecovirus (MERS-CoV), as well as the Alphacoronavirus (hCoV-229E and hCoV-OC43). Importantly, F0213 confers protection in both SARS-CoV-2-infected hamsters and MERS-CoV-infected human DPP4-knockin mice. F0213 possesses a dual therapeutic functionality that suppresses coronavirus replication via blocking viral polyprotein cleavage, as well as promoting antiviral immunity by antagonizing the PLpro deubiquitinase activity. Despite the significant difference of substrate recognition, mode of inhibition studies suggest that F0213 is a competitive inhibitor against SARS2-PLpro via binding with the 157K amino acid residue, whereas an allosteric inhibitor of MERS-PLpro interacting with its 271E position. Our proof-of-concept findings demonstrated that PLpro is a valid target for the development of broad-spectrum anti-coronavirus agents. The orally administered F0213 may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and future coronavirus outbreaks.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13238-022-00909-3.  相似文献   

5.
BackgroundThe rapid spread of novel coronavirus called SARS-CoV-2 or nCoV has caused countries all over the world to impose lockdowns and undertake stringent preventive measures. This new positive-sense single-stranded RNA strain of coronavirus spreads through droplets of saliva and nasal discharge.PurposeUS FDA has authorized the emergency use of Remdesivir looking at the increasing number of cases of COVID-19, however there is still no drug approved to treat COVID-19. An alternative way of treatment could be the use of naturally derived molecules with known antiviral properties.MethodWe reviewed the antiviral activities of two polyphenols derived from tea, epigallocatechin-3-gallate (EGCG) from green tea and theaflavins from black tea. Both green tea and black tea polyphenols have been reported to exhibit antiviral activities against various viruses, especially positive-sense single-stranded RNA viruses.ResultsRecent studies have revealed the possible binding sites present on SARS-CoV-2 and studied their interactions with tea polyphenols. EGCG and theaflavins, especially theaflavin-3,3′-digallate (TF3) have shown a significant interaction with the receptors under consideration in this review. Some docking studies further emphasize on the activity of these polyphenols against COVID-19.ConclusionThis review summarizes the available reports and evidences which support the use of tea polyphenols as potential candidates in prophylaxis and treatment of COVID-19.  相似文献   

6.
BackgroundSARS-CoV-2, an emerging strain of coronavirus, has affected millions of people from all the continents of world and received worldwide attention. This emerging health crisis calls for the urgent development of specific therapeutics against COVID-19 to potentially reduce the burden of this emerging pandemic.PurposeThis study aims to evaluate the anti-viral efficacy of natural bioactive entities against COVID-19 via molecular docking and molecular dynamics simulation.MethodsA library of 27 caffeic-acid derivatives was screened against 5 proteins of SARS-CoV-2 by using Molegro Virtual Docker 7 to obtain the binding energies and interactions between compounds and SARS-CoV-2 proteins. ADME properties and toxicity profiles were investigated via www.swissadme.ch web tools and Toxtree respectively. Molecular dynamics simulation was performed to determine the stability of the lead-protein interactions.ResultsOur obtained results has uncovered khainaoside C, 6-O-Caffeoylarbutin, khainaoside B, khainaoside C and vitexfolin A as potent modulators of COVID-19 possessing more binding energies than nelfinavir against COVID-19 Mpro, Nsp15, SARS-CoV-2 spike S2 subunit, spike open state and closed state structure respectively. While Calceolarioside B was identified as pan inhibitor, showing strong molecular interactions with all proteins except SARS-CoV-2 spike glycoprotein closed state. The results are supported by 20 ns molecular dynamics simulations of the best complexes.ConclusionThis study will hopefully pave a way for development of phytonutrients-based antiviral therapeutic for treatment or prevention of COVID-19 and further studies are recommended to evaluate the antiviral effects of these phytochemicals against SARS-CoV-2 in in vitro and in vivo models.  相似文献   

7.
COVID-19 caused by SARS-CoV-2 has posed a significant threat to global public health since its outbreak in late 2019. Although there are a few drugs approved for clinical treatment to combat SARS-CoV-2 infection currently, the severity of the ongoing global pandemic still urges the efforts to discover new antiviral compounds. As the viral spike (S) protein plays a key role in mediating virus entry, it becomes a potential target for the design of antiviral drugs against COVID-19. Here, we tested the antiviral activity of berbamine hydrochloride, a bis-benzylisoquinoline alkaloid, against SARS-CoV-2 infection. We found that berbamine hydrochloride could efficiently inhibit SARS-CoV-2 infection in different cell lines. Further experiments showed berbamine hydrochloride inhibits SARS-CoV-2 infection by targeting the viral entry into host cells. Moreover, berbamine hydrochloride and other bis-benzylisoquinoline alkaloids could potently inhibit S-mediated cell-cell fusion. Furthermore, molecular docking results implied that the berbamine hydrochloride could bind to the post fusion core of SARS-CoV-2 S2 subunit. Therefore, berbamine hydrochloride may represent a potential efficient antiviral agent against SARS-CoV-2 infection.  相似文献   

8.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.  相似文献   

9.
The world urgently needs effective antiviral approaches against emerging viruses, as shown by the coronavirus disease 2019 (COVID-19) pandemic, which has become an exponentially growing health crisis. Scientists from diverse backgrounds have directed their efforts towards identifying key features of SARS-CoV-2 and clinical manifestations of COVID-19 infection. Reports of more transmissible variants of SARS-CoV-2 also raise concerns over the possibility of an explosive trajectory of the pandemic, so scientific attention should focus on developing new weapons to help win the fight against coronaviruses that may undergo further mutations in the future. Drosophila melanogaster offers a powerful and potential in vivo model that can significantly increase the efficiency of drug screening for viral and bacterial infections. Thanks to its genes with functional human homologs, Drosophila could play a significant role in such gene-editing studies geared towards designing vaccines and antiviral drugs for COVID-19. It can also help rectify current drawbacks of CRISPR-based therapeutics like off-target effects and delivery issues, representing another momentous step forward in healthcare. Here I present an overview of recent literature and the current state of knowledge, explaining how it can open up new avenues for Drosophila in our battle against infectious diseases.  相似文献   

10.
11.
During the two-year pandemic of coronavirus disease 2019 (COVID-19), its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been evolving. SARS-CoV-2 Delta, a variant of concern, has become the dominant circulating strain worldwide within just a few months. Here, we performed a comprehensive analysis of a new B.1.617.2 Delta strain (Delta630) compared with the early WIV04 strain (WIV04) in vitro and in vivo, in terms of replication, infectivity, pathogenicity, and transmission in hamsters. When inoculated intranasally, Delta630 led to more pronounced weight loss and more severe disease in hamsters. Moreover, 40% mortality occurred about one week after infection with 104 PFU of Delta630, whereas no deaths occurred even after infection with 105 PFU of WIV04 or other strains belonging to the Delta variant. Moreover, Delta630 outgrew over WIV04 in the competitive aerosol transmission experiment. Taken together, the Delta630 strain showed increased replication ability, pathogenicity, and transmissibility over WIV04 in hamsters. To our knowledge, this is the first SARS-CoV-2 strain that causes death in a hamster model, which could be an asset for the efficacy evaluation of vaccines and antivirals against infections of SARS-CoV-2 Delta strains. The underlying molecular mechanisms of increased virulence and transmission await further analysis.  相似文献   

12.
BackgroundThe outbreak of coronavirus (SARS-CoV-2) disease caused more than 100,000,000 people get infected and over 2,200,000 people being killed worldwide. However, the current developed vaccines or drugs may be not effective in preventing the pandemic of COVID-19 due to the mutations of coronavirus and the severe side effects of the newly developed vaccines. Chinese herbal medicines and their active components play important antiviral activities. Corilagin exhibited antiviral effect on human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Epstein-Barr virus (EBV). However, whether it blocks the interaction between SARS-CoV-2 RBD and hACE2 has not been elucidated.PurposeTo characterize an active compound, corilagin derived from Phyllanthus urinaria as potential SARS-CoV-2 entry inhibitors for its possible preventive application in daily anti-virus hygienic products.MethodsComputational docking coupled with bio-layer interferometry, BLI were adopted to screen more than 1800 natural compounds for the identification of SARS-CoV-2 spike-RBD inhibitors. Corilagin was confirmed to have a strong binding affinity with SARS-CoV-2-RBD or human ACE2 (hACE2) protein by the BLI, ELISA and immunocytochemistry (ICC) assay. Furthermore, the inhibitory effect of viral infection of corilagin was assessed by in vitro pseudovirus system. Finally, the toxicity of corilagin was examined by using MTT assay and maximal tolerated dose (MTD) studies in C57BL/6 mice.ResultsCorilagin preferentially binds to a pocket that contains residues Cys 336 to Phe 374 of spike-RBD with a relatively low binding energy of -9.4 kcal/mol. BLI assay further confirmed that corilagin exhibits a relatively strong binding affinity to SARS-CoV-2-RBD and hACE2 protein. In addition, corilagin dose-dependently blocks SARS-CoV-2-RBD binding and abolishes the infectious property of RBD-pseudotyped lentivirus in hACE2 overexpressing HEK293 cells, which mimicked the entry of SARS-CoV-2 virus in human host cells. Finally, in vivo studies revealed that up to 300 mg/kg/day of corilagin was safe in C57BL/6 mice. Our findings suggest that corilagin could be a safe and potential antiviral agent against the COVID-19 acting through the blockade of the fusion of SARS-CoV-2 spike-RBD to hACE2 receptors.ConclusionCorilagin could be considered as a safe and environmental friendly anti-SARS-CoV-2 agent for its potential preventive application in daily anti-virus hygienic products.  相似文献   

13.
董慧君  李彤  庄辉  向宽辉 《微生物学报》2023,63(4):1329-1339
目前新型冠状病毒(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)感染所致的新型冠状病毒肺炎(corona virus disease, COVID-19)已成为威胁人类健康和安全的全球性流行性疾病。随着新突变株的不断出现,寻找有效治疗药物和靶点迫在眉睫。干扰素刺激基因(interferon-stimulated genes, ISGs)是由干扰素(interferons, IFNs)诱导后表达上调的一类基因,在宿主抵抗病毒感染过程中发挥着至关重要的作用。研究表明,ISGs能够靶向许多病毒复制的不同阶段发挥抗病毒作用,然而SARS-CoV-2也进化出各种策略干扰或逃避宿主天然免疫。因此,全面了解SARS-CoV-2与ISGs相互作用,对于设计抗病毒策略至关重要。本文简要综述不同ISGs抵抗SARS-CoV-2的作用机制,为开发新型的抗病毒药物提供思路和理论依据。  相似文献   

14.
Novel 2019 coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) and coronavirus disease 2019 (COVID-19), the respiratory syndrome it causes, have shaken the world to its core by infecting and claiming the lives of many people since originating in December 2019 in Wuhan, China. World Health Organization and several states have declared a pandemic situation and state of emergency, respectively. As there is no treatment for COVID-19, several research institutes and pharmaceutical companies are racing to find a cure. Advances in computational approaches have allowed the screening of massive antiviral compound libraries to identify those that may potentially work against SARS-CoV-2. Antiviral agents developed in the past to combat other viruses are being repurposed. At the same time, new vaccine candidates are being developed and tested in preclinical/clinical settings. This review provides a detailed overview of select repurposed drugs, their mechanism of action, associated toxicities, and major clinical trials involving these agents.  相似文献   

15.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the disease COVID-19 can lead to serious symptoms, such as severe pneumonia, in the elderly and those with underlying medical conditions. While vaccines are now available, they do not work for everyone and therapeutic drugs are still needed, particularly for treating life-threatening conditions. Here, we showed nasal delivery of a new, unmodified camelid single-domain antibody (VHH), termed K-874A, effectively inhibited SARS-CoV-2 titers in infected lungs of Syrian hamsters without causing weight loss and cytokine induction. In vitro studies demonstrated that K-874A neutralized SARS-CoV-2 in both VeroE6/TMPRSS2 and human lung-derived alveolar organoid cells. Unlike other drug candidates, K-874A blocks viral membrane fusion rather than viral attachment. Cryo-electron microscopy revealed K-874A bound between the receptor binding domain and N-terminal domain of the virus S protein. Further, infected cells treated with K-874A produced fewer virus progeny that were less infective. We propose that direct administration of K-874A to the lung could be a new treatment for preventing the reinfection of amplified virus in COVID-19 patients.  相似文献   

16.
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a public health crisis and led to tremendous economic devastation. The spike protein (S) of SARS-CoV-2 hijacks the angiotensin converting enzyme 2 (ACE2) as a receptor for virus entry, representing the initial step of viral infection. S is one of the major targets for development of the antiviral drugs, antibodies, and vaccines. ACE2 is a peptidase that plays a physiologically important role in the renin–angiotensin system. Concurrently, it also forms dimer of heterodimer with the neutral amino acid transporter B0AT1 to regulate intestinal amino acid metabolism. The symptoms of COVID-19 are closely correlated with the physiological functions of ACE2. In this review, we summarize the functional and structural studies on ACE2, B0AT1, and their complex with S of SARS-CoV-2, providing insights into the various symptoms caused by viral infection and the development of therapeutic strategies.  相似文献   

17.
新型冠状病毒肺炎(2019 novel coronavirus disease,COVID-19),一种由动物来源的新型冠状病毒(severe acute respiratory syndrome coronavirus 2,SRAS-CoV-2)感染所致的疾病在全球范围内急速传播,严重的危害人类的健康.快速、准确的诊...  相似文献   

18.
Background

The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus has currently affected millions of people around the world. To combat the rapid spread of COVID-19 there is an urgent need to implement technological platforms for the production of vaccines, drugs and diagnostic systems by the scientific community and pharmaceutical companies. The SARS-CoV-2 virus enters the cells by the interaction between the receptor-binding domain (RBD) present in the viral surface spike protein and its human receptor ACE2. The RBD protein is therefore considered as the target for potential subunit-based vaccines.

Methods and results

We evaluate the use of Nicotiana benthamiana plants as the host to transiently-producing recombinant RBD (RBDr) protein. The identity of the plant-produced RBDr was confirmed by immune assays and mass spectrometry. Immunogenicity was confirmed through the specific antibodies generated in all of the immunized mice compared to the PBS treated group.

Conclusions

In conclusions, the immunogenicity of the RBDr produced in N. benthamiana was confirmed. These findings support the use of plants as an antigen expression system for the rapid development of vaccine candidates.

  相似文献   

19.

In the late autumn of 2019, a new potentially lethal human coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. The pandemic spread of this zoonotic virus has created a global health emergency and an unprecedented socioeconomic crisis. The severity of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV?2, is highly variable. Most patients (~85%) develop no or mild symptoms, while others become seriously ill, some succumbing to disease-related complications. In this review, the SARS-CoV?2 life cycle, its transmission and the clinical and immunological features of COVID-19 are described. In addition, an overview is presented of the virological assays for detecting ongoing SARS-CoV?2 infections and the serological tests for SARS-CoV-2-specific antibody detection. Also discussed are the different approaches to developing a COVID-19 vaccine and the perspectives of treating COVID-19 with antiviral drugs, immunomodulatory agents and anticoagulants/antithrombotics. Finally, the cardiovascular manifestations of COVID-19 are briefly touched upon. While there is still much to learn about SARS-CoV?2, the tremendous recent advances in biomedical technology and knowledge and the huge amount of research into COVID-19 raise the hope that a remedy for this disease will soon be found. COVID-19 will nonetheless have a lasting impact on human society.

  相似文献   

20.
The development of efficient vaccines against COVID-19 is an emergent need for global public health. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major target for the COVID-19 vaccine. To quickly respond to the outbreak of the SARS-CoV-2 pandemic, a nucleic acid-based vaccine is a novel option, beyond the traditional inactivated virus vaccine or recombinant protein vaccine. Here, we report a DNA vaccine containing the spike gene for delivery via electroporation. The spike genes of SARS-CoV and SARS-CoV-2 were codon optimized for mammalian cell expression and then cloned into mammalian cell expression vectors, called pSARS-S and pSARS2-S, respectively. Spike protein expression was confirmed by immunoblotting after transient expression in HEK293T cells. After immunization, sera were collected for antigen-specific antibody and neutralizing antibody titer analyses. We found that both pSARS-S and pSARS2-S immunization induced similar levels of antibodies against S2 of SARS-CoV-2. In contrast, only pSARS2-S immunization induced antibodies against the receptor-binding domain of SARS-CoV-2. We further found that pSARS2-S immunization, but not pSARS-S immunization, could induce very high titers of neutralizing antibodies against SARS-CoV-2. We further analyzed SARS-CoV-2 S protein-specific T cell responses and found that the immune responses were biased toward Th1. Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. These data suggest that DNA vaccination could be a promising approach for protecting against COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号