首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

In China, the reference population of genotyped Holstein cattle is relatively small with to date, 80 bulls and 2091 cows genotyped with the Illumina 54 K chip. Including genotyped Holstein cattle from other countries in the reference population could improve the accuracy of genomic prediction of the Chinese Holstein population. This study investigated the consistency of linkage disequilibrium between adjacent markers between the Chinese and Nordic Holstein populations, and compared the reliability of genomic predictions based on the Chinese reference population only or the combined Chinese and Nordic reference populations.

Methods

Genomic estimated breeding values of Chinese Holstein cattle were predicted using a single-trait GBLUP model based on the Chinese reference dataset, and using a two-trait GBLUP model based on a joint reference dataset that included both the Chinese and Nordic Holstein data.

Results

The extent of linkage disequilibrium was similar in the Chinese and Nordic Holstein populations and the consistency of linkage disequilibrium between the two populations was very high, with a correlation of 0.97. Genomic prediction using the joint versus the Chinese reference dataset increased reliabilities of genomic predictions of Chinese Holstein bulls in the test data from 0.22, 0.15 and 0.11 to 0.51, 0.47 and 0.36 for milk yield, fat yield and protein yield, respectively. Using five-fold cross-validation, reliabilities of genomic predictions of Chinese cows increased from 0.15, 0.12 and 0.15 to 0.26, 0.17 and 0.20 for milk yield, fat yield and protein yield, respectively.

Conclusions

The linkage disequilibrium between the two populations was very consistent and using the combined Nordic and Chinese reference dataset substantially increased reliabilities of genomic predictions for Chinese Holstein cattle.  相似文献   

2.

Background

The purpose of this work was to study the impact of both the size of genomic reference populations and the inclusion of a residual polygenic effect on dairy cattle genetic evaluations enhanced with genomic information.

Methods

Direct genomic values were estimated for German Holstein cattle with a genomic BLUP model including a residual polygenic effect. A total of 17,429 genotyped Holstein bulls were evaluated using the phenotypes of 44 traits. The Interbull genomic validation test was implemented to investigate how the inclusion of a residual polygenic effect impacted genomic estimated breeding values.

Results

As the number of reference bulls increased, both the variance of the estimates of single nucleotide polymorphism effects and the reliability of the direct genomic values of selection candidates increased. Fitting a residual polygenic effect in the model resulted in less biased genome-enhanced breeding values and decreased the correlation between direct genomic values and estimated breeding values of sires in the reference population.

Conclusions

Genetic evaluation of dairy cattle enhanced with genomic information is highly effective in increasing reliability, as well as using large genomic reference populations. We found that fitting a residual polygenic effect reduced the bias in genome-enhanced breeding values, decreased the correlation between direct genomic values and sire''s estimated breeding values and made genome-enhanced breeding values more consistent in mean and variance as is the case for pedigree-based estimated breeding values.  相似文献   

3.

Background

In contrast to currently used single nucleotide polymorphism (SNP) panels, the use of whole-genome sequence data is expected to enable the direct estimation of the effects of causal mutations on a given trait. This could lead to higher reliabilities of genomic predictions compared to those based on SNP genotypes. Also, at each generation of selection, recombination events between a SNP and a mutation can cause decay in reliability of genomic predictions based on markers rather than on the causal variants. Our objective was to investigate the use of imputed whole-genome sequence genotypes versus high-density SNP genotypes on (the persistency of) the reliability of genomic predictions using real cattle data.

Methods

Highly accurate phenotypes based on daughter performance and Illumina BovineHD Beadchip genotypes were available for 5503 Holstein Friesian bulls. The BovineHD genotypes (631,428 SNPs) of each bull were used to impute whole-genome sequence genotypes (12,590,056 SNPs) using the Beagle software. Imputation was done using a multi-breed reference panel of 429 sequenced individuals. Genomic estimated breeding values for three traits were predicted using a Bayesian stochastic search variable selection (BSSVS) model and a genome-enabled best linear unbiased prediction model (GBLUP). Reliabilities of predictions were based on 2087 validation bulls, while the other 3416 bulls were used for training.

Results

Prediction reliabilities ranged from 0.37 to 0.52. BSSVS performed better than GBLUP in all cases. Reliabilities of genomic predictions were slightly lower with imputed sequence data than with BovineHD chip data. Also, the reliabilities tended to be lower for both sequence data and BovineHD chip data when relationships between training animals were low. No increase in persistency of prediction reliability using imputed sequence data was observed.

Conclusions

Compared to BovineHD genotype data, using imputed sequence data for genomic prediction produced no advantage. To investigate the putative advantage of genomic prediction using (imputed) sequence data, a training set with a larger number of individuals that are distantly related to each other and genomic prediction models that incorporate biological information on the SNPs or that apply stricter SNP pre-selection should be considered.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0149-x) contains supplementary material, which is available to authorized users.  相似文献   

4.
Accuracy of genomic breeding values in multi-breed dairy cattle populations   总被引:1,自引:0,他引:1  

Background

Two key findings from genomic selection experiments are 1) the reference population used must be very large to subsequently predict accurate genomic estimated breeding values (GEBV), and 2) prediction equations derived in one breed do not predict accurate GEBV when applied to other breeds. Both findings are a problem for breeds where the number of individuals in the reference population is limited. A multi-breed reference population is a potential solution, and here we investigate the accuracies of GEBV in Holstein dairy cattle and Jersey dairy cattle when the reference population is single breed or multi-breed. The accuracies were obtained both as a function of elements of the inverse coefficient matrix and from the realised accuracies of GEBV.

Methods

Best linear unbiased prediction with a multi-breed genomic relationship matrix (GBLUP) and two Bayesian methods (BAYESA and BAYES_SSVS) which estimate individual SNP effects were used to predict GEBV for 400 and 77 young Holstein and Jersey bulls respectively, from a reference population of 781 and 287 Holstein and Jersey bulls, respectively. Genotypes of 39,048 SNP markers were used. Phenotypes in the reference population were de-regressed breeding values for production traits. For the GBLUP method, expected accuracies calculated from the diagonal of the inverse of coefficient matrix were compared to realised accuracies.

Results

When GBLUP was used, expected accuracies from a function of elements of the inverse coefficient matrix agreed reasonably well with realised accuracies calculated from the correlation between GEBV and EBV in single breed populations, but not in multi-breed populations. When the Bayesian methods were used, realised accuracies of GEBV were up to 13% higher when the multi-breed reference population was used than when a pure breed reference was used. However no consistent increase in accuracy across traits was obtained.

Conclusion

Predicting genomic breeding values using a genomic relationship matrix is an attractive approach to implement genomic selection as expected accuracies of GEBV can be readily derived. However in multi-breed populations, Bayesian approaches give higher accuracies for some traits. Finally, multi-breed reference populations will be a valuable resource to fine map QTL.  相似文献   

5.

Background

Genomic evaluations are rapidly replacing traditional evaluation systems used for dairy cattle selection. Higher reliabilities from larger genotype files promote cooperation across country borders. Genomic information can be exchanged across countries using simple conversion equations, by modifying multi-trait across-country evaluation (MACE) to account for correlated residuals originating from the use of foreign evaluations, or by multi-trait analysis of genotypes for countries that use the same reference animals.

Methods

Traditional MACE assumes independent residuals because each daughter is measured in only one country. Genomic MACE could account for residual correlations using daughter equivalents from genomic data as a fraction of the total in each country and proportions of bulls shared. MACE methods developed to combine separate within-country genomic evaluations were compared to direct, multi-country analysis of combined genotypes using simulated genomic and phenotypic data for 8,193 bulls in nine countries.

Results

Reliabilities for young bulls were much higher for across-country than within-country genomic evaluations as measured by squared correlations of estimated with true breeding values. Gains in reliability from genomic MACE were similar to those of multi-trait evaluation of genotypes but required less computation. Sharing of reference genotypes among countries created large residual correlations, especially for young bulls, that are accounted for in genomic MACE.

Conclusions

International genomic evaluations can be computed either by modifying MACE to account for residual correlations across countries or by multi-trait evaluation of combined genotype files. The gains in reliability justify the increased computation but require more cooperation than in previous breeding programs.  相似文献   

6.

Background

Although the X chromosome is the second largest bovine chromosome, markers on the X chromosome are not used for genomic prediction in some countries and populations. In this study, we presented a method for computing genomic relationships using X chromosome markers, investigated the accuracy of imputation from a low density (7K) to the 54K SNP (single nucleotide polymorphism) panel, and compared the accuracy of genomic prediction with and without using X chromosome markers.

Methods

The impact of considering X chromosome markers on prediction accuracy was assessed using data from Nordic Holstein bulls and different sets of SNPs: (a) the 54K SNPs for reference and test animals, (b) SNPs imputed from the 7K to the 54K SNP panel for test animals, (c) SNPs imputed from the 7K to the 54K panel for half of the reference animals, and (d) the 7K SNP panel for all animals. Beagle and Findhap were used for imputation. GBLUP (genomic best linear unbiased prediction) models with or without X chromosome markers and with or without a residual polygenic effect were used to predict genomic breeding values for 15 traits.

Results

Averaged over the two imputation datasets, correlation coefficients between imputed and true genotypes for autosomal markers, pseudo-autosomal markers, and X-specific markers were 0.971, 0.831 and 0.935 when using Findhap, and 0.983, 0.856 and 0.937 when using Beagle. Estimated reliabilities of genomic predictions based on the imputed datasets using Findhap or Beagle were very close to those using the real 54K data. Genomic prediction using all markers gave slightly higher reliabilities than predictions without X chromosome markers. Based on our data which included only bulls, using a G matrix that accounted for sex-linked relationships did not improve prediction, compared with a G matrix that did not account for sex-linked relationships. A model that included a polygenic effect did not recover the loss of prediction accuracy from exclusion of X chromosome markers.

Conclusions

The results from this study suggest that markers on the X chromosome contribute to accuracy of genomic predictions and should be used for routine genomic evaluation.  相似文献   

7.

Background

Differences in linkage disequilibrium and in allele substitution effects of QTL (quantitative trait loci) may hinder genomic prediction across populations. Our objective was to develop a deterministic formula to estimate the accuracy of across-population genomic prediction, for which reference individuals and selection candidates are from different populations, and to investigate the impact of differences in allele substitution effects across populations and of the number of QTL underlying a trait on the accuracy.

Methods

A deterministic formula to estimate the accuracy of across-population genomic prediction was derived based on selection index theory. Moreover, accuracies were deterministically predicted using a formula based on population parameters and empirically calculated using simulated phenotypes and a GBLUP (genomic best linear unbiased prediction) model. Phenotypes of 1033 Holstein-Friesian, 105 Groninger White Headed and 147 Meuse-Rhine-Yssel cows were simulated by sampling 3000, 300, 30 or 3 QTL from the available high-density SNP (single nucleotide polymorphism) information of three chromosomes, assuming a correlation of 1.0, 0.8, 0.6, 0.4, or 0.2 between allele substitution effects across breeds. The simulated heritability was set to 0.95 to resemble the heritability of deregressed proofs of bulls.

Results

Accuracies estimated with the deterministic formula based on selection index theory were similar to empirical accuracies for all scenarios, while accuracies predicted with the formula based on population parameters overestimated empirical accuracies by ~25 to 30%. When the between-breed genetic correlation differed from 1, i.e. allele substitution effects differed across breeds, empirical and deterministic accuracies decreased in proportion to the genetic correlation. Using a multi-trait model, it was possible to accurately estimate the genetic correlation between the breeds based on phenotypes and high-density genotypes. The number of QTL underlying the simulated trait did not affect the accuracy.

Conclusions

The deterministic formula based on selection index theory estimated the accuracy of across-population genomic predictions well. The deterministic formula using population parameters overestimated the across-population genomic accuracy, but may still be useful because of its simplicity. Both formulas could accommodate for genetic correlations between populations lower than 1. The number of QTL underlying a trait did not affect the accuracy of across-population genomic prediction using a GBLUP method.  相似文献   

8.

Background

Milkability, primarily evaluated by measurements of milking speed and time, has an economic impact in milk production of dairy cattle. Recently the Italian Brown Swiss Breeders Association has included milking speed in genetic evaluations. The main objective of this study was to investigate the possibility of implementing genomic selection for milk flow traits in the Italian Brown Swiss population and thereby evaluate the potential of genomic selection for novel traits in medium-sized populations. Predicted breeding values and reliabilities based on genomic information were compared with those obtained from traditional breeding values.

Methods

Milk flow measures for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow were collected on 37 213 Italian Brown Swiss cows. Breeding values for genotyped sires (n = 1351) were obtained from standard BLUP and genome-enhanced breeding value techniques utilizing two-stage and single-step methods. Reliabilities from a validation dataset were estimated and used to compare accuracies obtained from parental averages with genome-enhanced predictions.

Results

Genome-enhanced breeding values evaluated using two-stage methods had similar reliabilities with values ranging from 0.34 to 0.49 for the different traits. Across two-stage methods, the average increase in reliability from parental average was approximately 0.17 for all traits, with the exception of descending time, for which reliability increased to 0.11. Combining genomic and pedigree information in a single-step produced the largest increases in reliability over parent averages: 0.20, 0.24, 0.21, 0.14, 0.20 and 0.21 for total milking time, ascending time, time of plateau, descending time, average milk flow and maximum milk flow, respectively.

Conclusions

Using genomic models increased the accuracy of prediction compared to traditional BLUP methods. Our results show that, among the methods used to predict genome-enhanced breeding values, the single-step method was the most successful at increasing the reliability for most traits. The single-step method takes advantage of all the data available, including phenotypes from non-genotyped animals, and can easily be incorporated into current breeding evaluations.  相似文献   

9.

Background

Nellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population.

Methods

Influential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group.

Results

Accuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships.

Conclusions

Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.  相似文献   

10.

Background

The accuracy of genomic prediction depends largely on the number of animals with phenotypes and genotypes. In some industries, such as sheep and beef cattle, data are often available from a mixture of breeds, multiple strains within a breed or from crossbred animals. The objective of this study was to compare the accuracy of genomic prediction for several economically important traits in sheep when using data from purebreds, crossbreds or a combination of those in a reference population.

Methods

The reference populations were purebred Merinos, crossbreds of Border Leicester (BL), Poll Dorset (PD) or White Suffolk (WS) with Merinos and combinations of purebred and crossbred animals. Genomic breeding values (GBV) were calculated based on genomic best linear unbiased prediction (GBLUP), using a genomic relationship matrix calculated based on 48 599 Ovine SNP (single nucleotide polymorphisms) genotypes. The accuracy of GBV was assessed in a group of purebred industry sires based on the correlation coefficient between GBV and accurate estimated breeding values based on progeny records.

Results

The accuracy of GBV for Merino sires increased with a larger purebred Merino reference population, but decreased when a large purebred Merino reference population was augmented with records from crossbred animals. The GBV accuracy for BL, PD and WS breeds based on crossbred data was the same or tended to decrease when more purebred Merinos were added to the crossbred reference population. The prediction accuracy for a particular breed was close to zero when the reference population did not contain any haplotypes of the target breed, except for some low accuracies that were obtained when predicting PD from WS and vice versa.

Conclusions

This study demonstrates that crossbred animals can be used for genomic prediction of purebred animals using 50 k SNP marker density and GBLUP, but crossbred data provided lower accuracy than purebred data. Including data from distant breeds in a reference population had a neutral to slightly negative effect on the accuracy of genomic prediction. Accounting for differences in marker allele frequencies between breeds had only a small effect on the accuracy of genomic prediction from crossbred or combined crossbred and purebred reference populations.  相似文献   

11.

Background

As more and more genotypes become available, accuracy of genomic evaluations can potentially increase. However, the impact of genotype data on accuracy depends on the structure of the genotyped cohort. For populations such as dairy cattle, the greatest benefit has come from genotyping sires with high accuracy, whereas the benefit due to adding genotypes from cows was smaller. In broiler chicken breeding programs, males have less progeny than dairy bulls, females have more progeny than dairy cows, and most production traits are recorded for both sexes. Consequently, genotyping both sexes in broiler chickens may be more advantageous than in dairy cattle.

Methods

We studied the contribution of genotypes from males and females using a real dataset with genotypes on 15 723 broiler chickens. Genomic evaluations used three training sets that included only males (4648), only females (8100), and both sexes (12 748). Realized accuracies of genomic estimated breeding values (GEBV) were used to evaluate the benefit of including genotypes for different training populations on genomic predictions of young genotyped chickens.

Results

Using genotypes on males, the average increase in accuracy of GEBV over pedigree-based EBV for males and females was 12 and 1 percentage points, respectively. Using female genotypes, this increase was 1 and 18 percentage points, respectively. Using genotypes of both sexes increased accuracies by 19 points for males and 20 points for females. For two traits with similar heritabilities and amounts of information, realized accuracies from cross-validation were lower for the trait that was under strong selection.

Conclusions

Overall, genotyping males and females improves predictions of all young genotyped chickens, regardless of sex. Therefore, when males and females both contribute to genetic progress of the population, genotyping both sexes may be the best option.  相似文献   

12.

Background

Genomic selection is increasingly widely practised, particularly in dairy cattle. However, the accuracy of current predictions using GBLUP (genomic best linear unbiased prediction) decays rapidly across generations, and also as selection candidates become less related to the reference population. This is likely caused by the effects of causative mutations being dispersed across many SNPs (single nucleotide polymorphisms) that span large genomic intervals. In this paper, we hypothesise that the use of a nonlinear method (BayesR), combined with a multi-breed (Holstein/Jersey) reference population will map causative mutations with more precision than GBLUP and this, in turn, will increase the accuracy of genomic predictions for selection candidates that are less related to the reference animals.

Results

BayesR improved the across-breed prediction accuracy for Australian Red dairy cattle for five milk yield and composition traits by an average of 7% over the GBLUP approach (Australian Red animals were not included in the reference population). Using the multi-breed reference population with BayesR improved accuracy of prediction in Australian Red cattle by 2 – 5% compared to using BayesR with a single breed reference population. Inclusion of 8478 Holstein and 3917 Jersey cows in the reference population improved accuracy of predictions for these breeds by 4 and 5%. However, predictions for Holstein and Jersey cattle were similar using within-breed and multi-breed reference populations. We propose that the improvement in across-breed prediction achieved by BayesR with the multi-breed reference population is due to more precise mapping of quantitative trait loci (QTL), which was demonstrated for several regions. New candidate genes with functional links to milk synthesis were identified using differential gene expression in the mammary gland.

Conclusions

QTL detection and genomic prediction are usually considered independently but persistence of genomic prediction accuracies across breeds requires accurate estimation of QTL effects. We show that accuracy of across-breed genomic predictions was higher with BayesR than with GBLUP and that BayesR mapped QTL more precisely. Further improvements of across-breed accuracy of genomic predictions and QTL mapping could be achieved by increasing the size of the reference population, including more breeds, and possibly by exploiting pleiotropic effects to improve mapping efficiency for QTL with small effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0074-4) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Genomic predictions can be applied early in life without impacting selection candidates. This is especially useful for meat quality traits in sheep. Carcass and novel meat quality traits were predicted in a multi-breed sheep population that included Merino, Border Leicester, Polled Dorset and White Suffolk sheep and their crosses.

Methods

Prediction of breeding values by best linear unbiased prediction (BLUP) based on pedigree information was compared to prediction based on genomic BLUP (GBLUP) and a Bayesian prediction method (BayesR). Cross-validation of predictions across sire families was used to evaluate the accuracy of predictions based on the correlation of predicted and observed values and the regression of observed on predicted values was used to evaluate bias of methods. Accuracies and regression coefficients were calculated using either phenotypes or adjusted phenotypes as observed variables.

Results and conclusions

Genomic methods increased the accuracy of predicted breeding values to on average 0.2 across traits (range 0.07 to 0.31), compared to an average accuracy of 0.09 for pedigree-based BLUP. However, for some traits with smaller reference population size, there was no increase in accuracy or it was small. No clear differences in accuracy were observed between GBLUP and BayesR. The regression of phenotypes on breeding values was close to 1 for all methods, indicating little bias, except for GBLUP and adjusted phenotypes (regression = 0.78). Accuracies calculated with adjusted (for fixed effects) phenotypes were less variable than accuracies based on unadjusted phenotypes, indicating that fixed effects influence the latter. Increasing the reference population size increased accuracy, indicating that adding more records will be beneficial. For the Merino, Polled Dorset and White Suffolk breeds, accuracies were greater than for the Border Leicester breed due to the smaller sample size and limited across-breed prediction. BayesR detected only a few large marker effects but one region on chromosome 6 was associated with large effects for several traits. Cross-validation produced very similar variability of accuracy and regression coefficients for BLUP, GBLUP and BayesR, showing that this variability is not a property of genomic methods alone. Our results show that genomic selection for novel difficult-to-measure traits is a feasible strategy to achieve increased genetic gain.  相似文献   

14.

Background

The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped.

Methods

Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets.

Results

Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams.

Conclusions

Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited.  相似文献   

15.

Background

Over the last ten years, genomic selection has developed enormously. Simulations and results on real data suggest that breeding values can be predicted with high accuracy using genetic markers alone. However, to reach high accuracies, large reference populations are needed. In many livestock populations or even species, such populations cannot be established when traits are difficult or expensive to record, or when the population size is small. The value of genomic selection is then questionable.

Methods

In this study, we compare traditional breeding schemes based on own performance or progeny information to genomic selection schemes, for which the number of phenotypic records is limiting. Deterministic simulations were performed using selection index theory. Our focus was on the equilibrium response obtained after a few generations of selection. Therefore, we first investigated the magnitude of the Bulmer effect with genomic selection.

Results

Results showed that the reduction in response due to the Bulmer effect is the same for genomic selection as for selection based on traditional BLUP estimated breeding values, and is independent of the accuracy of selection. The reduction in response with genomic selection is greater than with selection based directly on phenotypes without the use of pedigree information, such as mass selection. To maximize the accuracy of genomic estimated breeding values when the number of phenotypic records is limiting, the same individuals should be phenotyped and genotyped, rather than genotyping parents and phenotyping their progeny. When the generation interval cannot be reduced with genomic selection, large reference populations are required to obtain a similar response to that with selection based on BLUP estimated breeding values based on own performance or progeny information. However, when a genomic selection scheme has a moderate decrease in generation interval, relatively small reference population sizes are needed to obtain a similar response to that with selection on traditional BLUP estimated breeding values.

Conclusions

When the trait of interest cannot be recorded on the selection candidate, genomic selection schemes are very attractive even when the number of phenotypic records is limited, because traditional breeding requires progeny testing schemes with long generation intervals in those cases.  相似文献   

16.

Background

Replacing pedigree-based BLUP evaluations by genomic evaluations in pig breeding schemes can result in greater selection accuracy and genetic gains, especially for traits with limited phenotypes. However, this methodological change would generate additional costs. The objective of this study was to determine whether additional expenditures would be more profitably devoted to implementing genomic evaluations or to increasing phenotyping capacity while retaining traditional evaluations.

Methods

Stochastic simulation was used to simulate a population with 1050 breeding females and 50 boars that was selected for 10 years for a breeding goal with two uncorrelated traits with heritabilities of 0.4. The reference breeding scheme was based on phenotyping 13 770 candidates per year for trait 1 and 270 sibs of candidates per year for trait 2, with selection based on pedigree-based BLUP estimated breeding values. Increased expenditures were allocated to either increasing the phenotyping capacity for trait 2 while maintaining traditional evaluations, or to implementing genomic selection. The genomic scheme was based on two training populations: one for trait 2, consisting of phenotyped sibs of the candidates whose number increased from 1000 to 3430 over time, and one for trait 1, consisting of the selection candidates. Several genomic scenarios were tested, where the size of the training population for trait 1, and the number of genotyped candidates pre-selected based on their parental estimated breeding value, varied.

Results

Both approaches resulted in higher genetic trends for the population breeding goal and lower rates of inbreeding compared to the reference scheme. However, even a very marked increase in phenotyping capacity for trait 2 could not match improvements achieved with genomic selection when the number of genotyped candidates was large. Genotyping just a limited number of pre-selected candidates significantly reduced the extra costs, while preserving most of the benefits in terms of genetic trends and inbreeding. Implementing genomic evaluations was the most efficient approach when major expenditure was possible, whereas increasing phenotypes was preferable when limited resources were available.

Conclusions

Economic decisions on implementing genomic evaluations in a pig nucleus population must take account of population characteristics, phenotyping and genotyping costs, and available funds.  相似文献   

17.

Background

A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population.

Methods

The data consisted of de-regressed proofs (DRP) for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect.

Results

Averaged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method with a polygenic effect led to less bias of genomic predictions than the simple GBLUP method, and both single-step blending methods yielded less bias of predictions than all GBLUP methods.

Conclusions

The single-step blending method is an appealing approach for practical genomic prediction in dairy cattle. Genomic prediction from the single-step blending method can be improved by adjusting the scale of the genomic relationship matrix.  相似文献   

18.

Background

Currently, genome-wide evaluation of cattle populations is based on SNP-genotyping using ~ 54 000 SNP. Increasing the number of markers might improve genomic predictions and power of genome-wide association studies. Imputation of genotypes makes it possible to extrapolate genotypes from lower to higher density arrays based on a representative reference sample for which genotypes are obtained at higher density.

Methods

Genotypes using 639 214 SNP were available for 797 bulls of the Fleckvieh cattle breed. The data set was divided into a reference and a validation population. Genotypes for all SNP except those included in the BovineSNP50 Bead chip were masked and subsequently imputed for animals of the validation population. Imputation of genotypes was performed with Beagle, findhap.f90, MaCH and Minimac. The accuracy of the imputed genotypes was assessed for four different scenarios including 50, 100, 200 and 400 animals as reference population. The reference animals were selected to account for 78.03%, 89.21%, 97.47% and > 99% of the gene pool of the genotyped population, respectively.

Results

Imputation accuracy increased as the number of animals and relatives in the reference population increased. Population-based algorithms provided highly reliable imputation of genotypes, even for scenarios with 50 and 100 reference animals only. Using MaCH and Minimac, the correlation between true and imputed genotypes was > 0.975 with 100 reference animals only. Pre-phasing the genotypes of both the reference and validation populations not only provided highly accurate imputed genotypes but was also computationally efficient. Genome-wide analysis of imputation accuracy led to the identification of many misplaced SNP.

Conclusions

Genotyping key animals at high density and subsequent population-based genotype imputation yield high imputation accuracy. Pre-phasing the genotypes of the reference and validation populations is computationally efficient and results in high imputation accuracy, even when the reference population is small.  相似文献   

19.

Background

Accuracy of genomic prediction depends on number of records in the training population, heritability, effective population size, genetic architecture, and relatedness of training and validation populations. Many traits have ordered categories including reproductive performance and susceptibility or resistance to disease. Categorical scores are often recorded because they are easier to obtain than continuous observations. Bayesian linear regression has been extended to the threshold model for genomic prediction. The objective of this study was to quantify reductions in accuracy for ordinal categorical traits relative to continuous traits.

Methods

Efficiency of genomic prediction was evaluated for heritabilities of 0.10, 0.25 or 0.50. Phenotypes were simulated for 2250 purebred animals using 50 QTL selected from actual 50k SNP (single nucleotide polymorphism) genotypes giving a proportion of causal to total loci of.0001. A Bayes C π threshold model simultaneously fitted all 50k markers except those that represented QTL. Estimated SNP effects were utilized to predict genomic breeding values in purebred (n = 239) or multibreed (n = 924) validation populations. Correlations between true and predicted genomic merit in validation populations were used to assess predictive ability.

Results

Accuracies of genomic estimated breeding values ranged from 0.12 to 0.66 for purebred and from 0.04 to 0.53 for multibreed validation populations based on Bayes C π linear model analysis of the simulated underlying variable. Accuracies for ordinal categorical scores analyzed by the Bayes C π threshold model were 20% to 50% lower and ranged from 0.04 to 0.55 for purebred and from 0.01 to 0.44 for multibreed validation populations. Analysis of ordinal categorical scores using a linear model resulted in further reductions in accuracy.

Conclusions

Threshold traits result in markedly lower accuracy than a linear model on the underlying variable. To achieve an accuracy equal or greater than for continuous phenotypes with a training population of 1000 animals, a 2.25 fold increase in training population size was required for categorical scores fitted with the threshold model. The threshold model resulted in higher accuracies than the linear model and its advantage was greatest when training populations were smallest.  相似文献   

20.

Background

Isolated populations are a useful resource for mapping complex traits due to shared stable environment, reduced genetic complexity and extended Linkage Disequilibrium (LD) compared to the general population. Here we describe a large genetic isolate from the North West Apennines, the mountain range that runs through Italy from the North West Alps to the South.

Methodology/Principal Findings

The study involved 1,803 people living in 7 villages of the upper Borbera Valley. For this large population cohort, data from genealogy reconstruction, medical questionnaires, blood, anthropometric and bone status QUS parameters were evaluated. Demographic and epidemiological analyses indicated a substantial genetic component contributing to each trait variation as well as overlapping genetic determinants and family clustering for some traits.

Conclusions/Significance

The data provide evidence for significant heritability of medical relevant traits that will be important in mapping quantitative traits. We suggest that this population isolate is suitable to identify rare variants associated with complex phenotypes that may be difficult to study in larger but more heterogeneous populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号