首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xylarianaphthol-1, a novel dinaphthofuran derivative, was isolated from a marine sponge-derived fungus of order Xylariales on the guidance of a bioassay using the transfected human osteosarcoma MG63 cells (MG63luc+). The chemical structure of xylarianaphthol-1 was determined from the 1H and 13C NMR analysis and was further confirmed by the total synthesis. Xylarianaphthol-1 activated p21 promoter stably transfected in MG63 cells dose-dependently. Expression of p21 protein in the wild-type MG63 cells was also increased by xylarianaphthol-1 treatment.  相似文献   

2.
3.
We have previously shown that avian reovirus (ARV) S1133 and its structural protein σC cause apoptosis in cultured Vero cells through an unknown intracellular signaling pathway. This work investigates how ARV S1133 induces proapoptotic signals. Upon ARV S1133 infection and subsequent apoptosis, levels of p53 mRNA and protein, and p53 serine-46 and serine-392 phosphorylation increased. In addition, p53-driven reporter activity and levels of the p53-induced apoptotic protein bax were increased, and Src tyrosine-418 phosphorylation was elevated. UV-inactivated virus failed to activate Src, p53 or induce apoptosis. Over-expression of dominant negative p53, or treatment with tyrosine kinase inhibitor genistein protected cells from ARV S1133-induced apoptosis. Inhibition of Src by over-expression of C-terminal Src kinase (Csk) or treatment with Src family tyrosine kinase inhibitor SU-6656 diminished the ARV S1133-induced p53 expression, activation, and apoptosis. Over-expression of σC resulted in the upregulation of p53, p53 serine-46 phosphorylation, p53-driven reporter activity and accumulation of bax. σC expression during ARV S1133 infection was concomitant with the onset of apoptosis. These studies provide strong evidence that the viral gene expression is required for ARV S1133 to initiate a proapoptotic signal via Src to p53. In addition, σC was able to utilize a p53-dependent pathway to elicit apoptosis.  相似文献   

4.
BACKGROUND: p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS: In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS: Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS: Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy.  相似文献   

5.
Aaptamine, a benzonaphthyridine alkaloid was isolated from a marine sponge on the guidance of a bioassay using the transfected human osteosarcoma MG63 cells (MG63luc(+)). Aaptamine activated p21 promoter stably transfected in MG63 cells dose-dependently at the concentrations of 20-50microM. Expression of p21 and its mRNA in the wild-type MG63 cells also increased by aaptamine-treatment. Furthermore, the cell cycle of MG63 cells was arrested at the G2/M phase within 48h by the aaptamine-treatment. To analyze a responsive element of p21 promoter in the up-regulation of p21 by aaptamine, MG63 cells were transiently transfected with a series of the deleted or mutated promoter segments, and induction of luciferase with aaptamine treatment was examined by using these corresponding transfected cells. The activation of p21 promoter by aaptamine was led through acting Sp1 sites between -82 and -50bp in a p53-independent manner.  相似文献   

6.
7.
The promise and obstacle of p53 as a cancer therapeutic agent   总被引:1,自引:0,他引:1  
p53 is a tumor suppressor gene that is mutated in greater than 50% of human cancers. The action of p53 as a tumor suppressor involves inhibition of cell proliferation through cell cycle arrest and/or apoptosis. Loss of p53 function therefore allows the uncontrolled proliferation associated with cancerous cells. While design of most anti-cancer agents has focused on targeting and inactivating cancer promoting targets, such as oncogenes, recent attention has been given to restoring the lost activity of tumor suppressor genes. Because the loss of p53 function is so prevalent in human cancer, this protein is an ideal candidate for such therapy. Several gene therapeutic strategies have been employed in the attempt to restore p53 function to cancerous cells. These approaches include introduction of wild-type p53 into cells with mutant p53; the use of small molecules to stabilize mutant p53 in a wild-type, active conformation; and the introduction of agents to prevent degradation of p53 by proteins that normally target it. In addition, because mutant p53 has oncogenic gain of function activity, several approaches have been investigated to selectively target and kill cells harboring mutant p53. These include the introduction of mutant viruses that cause cell death only in cells with mutant p53 and the introduction of a gene that, in the absence of functional p53, produces a toxic product. Many obstacles remain to optimize these strategies for use in humans, but, despite these, restoration of p53 function is a promising anti-cancer therapeutic approach.  相似文献   

8.
We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that the Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the α isoform of p38 MAPK (p38α MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38α MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.  相似文献   

9.
Although Ras is a potent oncogene in human tumors it has the paradoxical ability to promote Oncogene Induced Senescence (OIS). This appears to serve as a major barrier to Ras driven transformation in vivo. The signaling pathways used by Ras to promote senescence remain relatively poorly understood, but appear to invoke both the p53 and the Rb master tumor suppressors. Exactly how Ras communicates with p53 and Rb has remained something of a puzzle. NORE1A is a direct Ras effector that is frequently downregulated in human tumors. We have now found that it serves as a powerful Ras senescence effector. Moreover, we have defined signaling mechanisms that allows Ras to control both p53 and Rb post-translational modifications via the NORE1A scaffolding molecule. Indeed, NORE1A can be detected in complex with both p53 and Rb. Thus, by coupling Ras to both tumor suppressors, NORE1A forms a major component of the Ras senescence machinery and serves as the missing link between Ras and p53/Rb.  相似文献   

10.
11.
12.
In tumors that retain wild-type p53, its tumor-suppressor function is often impaired as a result of the deregulation of HDM-2, which binds to p53 and targets it for proteasomal degradation. We have screened a chemical library and identified a small molecule named RITA (reactivation of p53 and induction of tumor cell apoptosis), which bound to p53 and induced its accumulation in tumor cells. RITA prevented p53-HDM-2 interaction in vitro and in vivo and affected p53 interaction with several negative regulators. RITA induced expression of p53 target genes and massive apoptosis in various tumor cells lines expressing wild-type p53. RITA suppressed the growth of human fibroblasts and lymphoblasts only upon oncogene expression and showed substantial p53-dependent antitumor effect in vivo. RITA may serve as a lead compound for the development of an anticancer drug that targets tumors with wild-type p53.  相似文献   

13.
14.
15.
16.
17.
The mechanisms of sodium selenite-induced cell death in cervical carcinoma cells were studied during 24 h of exposure in the HeLa Hep-2 cell line. Selenite at the employed concentrations of 5 and 50 μmol/L produced time- and dose-dependent suppression of DNA synthesis and induced DNA damage which resulted in phosphorylation of histone H2A.X. These effects were influenced by pretreatment of cells with the SOD/catalase mimetic MnTMPyP or glutathione-depleting buthionine sulfoximine, suggesting the significant role of selenite-generated oxidative stress. Following the DNA damage, selenite activated p53-dependent pathway as evidenced by the appearance of phosphorylated p53 and accumulation of p21 in the treated cells. Concomitantly, selenite activated p38 pathway but its effect on JNK was very weak. p53- and p38-dependent signaling led to the accumulation of Bax protein, which was preventable by specific inhibitors of p38 (SB 203580) and p53 (Pifithrin-α). Mitochondria in selenite-treated cells changed their dynamics (shape and localization) and released AIF and Smac/Diablo, which initiated caspase-independent apoptosis as confirmed by the caspase-3 activity assay and the low effect of caspase inhibitors z-DEVD-fmk and z-VAD-fmk on cell death. We conclude that selenite induces caspase-independent apoptosis in cervical carcinoma cells mostly by oxidative stress-mediated activation of p53 and p38 pathways, but other selenite-mediated effects, in particular mitochondria-specific ones, are also involved.  相似文献   

18.
19.
Using the differential display method combined with a cell line that carries a well-controlled expression system for wild-type p53, we isolated a p53-inducible gene, termed p53DINP1 (p53-dependent damage-inducible nuclear protein 1). Cell death induced by DNA double-strand breaks (DSBs), as well as Ser46 phosphorylation of p53 and induction of p53AIP1, were blocked when we inhibited expression of p53DINP1 by means of an antisense oligonucleotide. Overexpression of p53DINP1 and DNA damage by DSBs synergistically enhanced Ser46 phosphorylation of p53, induction of p53AIP1 expression, and apoptotic cell death. Furthermore, the protein complex interacting with p53DINP1 was shown to phosphorylate Ser46 of p53. Our results suggest that p53DINP1 may regulate p53-dependent apoptosis through phosphorylation of p53 at Ser46, serving as a cofactor for the putative p53-Ser46 kinase.  相似文献   

20.
The importance of p53 in carcinogenesis stems from its central role in inducing cell cycle arrest or apoptosis in response to cellular stresses. We have identified a Drosophila homolog of p53 ("Dmp53"). Like mammalian p53, Dmp53 binds specifically to human p53 binding sites, and overexpression of Dmp53 induces apoptosis. Importantly, inhibition of Dmp53 function renders cells resistant to X ray-induced apoptosis, suggesting that Dmp53 is required for the apoptotic response to DNA damage. Unlike mammalian p53, Dmp53 appears unable to induce a G1 cell cycle block when overexpressed, and inhibition of Dmp53 activity does not affect X ray-induced cell cycle arrest. These data reveal an ancestral proapoptotic function for p53 and identify Drosophila as an ideal model system for elucidating the p53 apoptotic pathway(s) induced by DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号