共查询到20条相似文献,搜索用时 0 毫秒
1.
《Free radical research》2013,47(5):279-290
Based on the unusually high and stage-dependant susceptibility of Plasmodia to oxidant stress it has been proposed that during parasite development, increasing levels of redox-active forms of iron are gradually released. The purpose of this study was to examine this proposal by using an assay monitoring the levels of available forms of iron for redox reactions. Ascorbate-driven and iron-mediated degradation of adventitious DNA served as the basis for this functional assay.Incubation of DNA with lysate from infected RBC caused massive degradation, which was dose, time-and parasite-stage dependent. In contrast, lysate from non-infected RBC did not induce DNA degradation. Likewise, lysate only from infected RBC enhanced the aerobic oxidation of ascorbate. These effects on both reactions, DNA degradation and ascorbate oxidation, could be reconstructed with hemin, instead of lysate. Also, chelators exerted similar effects on both reactions.The results suggest that increased levels of redox-active forms of iron are liberated during parasite development. We propose that hemin or hemin-like structures are the appropriate candidates which could catalyze oxidative stress and deregulate the delicate redox balance of the host-parasite system. 相似文献
2.
Elena Driomina Igor Polnikov Victor Sharov Ofelia Azizova Yury Vladimirov 《Free radical research》1994,20(5):279-288
A chemiluminescence (CL) flash kinetics on the addition of Fe2+ ions into oxidized low density lipoprotein (LDL) suspension has been studied. LDL oxidation was carried out at 37°C without and in the presence of 5 or 50 μM of Cu.2+ It has been found that under certain experimental conditions (the addition of excess iron ions, more than 1 mM) the amplitude of CL flash depended almost linearly (1) on the concentration of oxidized LDL and (2) on the extent of LDL oxidation measured as diene conjugates (DC) and 2-thiobarbituric acid-reactive substance (TBARS) accumulation. The corresponding correlation coefficients were: for TBARS - 0.94 and for DC - 0.97, in the case of LDL autooxidation; 0.72 and 0.98, in the case of copper-induced LDL oxidation. A sensitivity of the CL method was shown to be significantly enhanced (by more than two orders) in the presence of CL sensitizer - 2, 3,5, 6-lH,4H-tetrahydro-9-(2' -benzoimidazolyl)-quinolizin-(9, 9a, 1 -gh)coumarin. 相似文献
3.
《Free radical research》2013,47(5):293-301
The characteristics of the visible luminescence that follows the lipid peroxidative process were investigated either in the autoxidation of rat brain homogenates or in the azo-bis-arnidinopropane initiated lipid peroxidation of erythrocyte plasma membranes and liver microsomes. In these systems the luminescence decay observed after total inhibition of the lipid peroxidation is not an iron-catalyzed process, and follows a complex kinetics comprising fast and slow components. The slow component of the decay lasts for several hours at 27°C and amounts to nearly half of the total intensity measured prior to the inhibition of the oxidative process by propyl gallate. The addition of thiols (diethyldithiocarbamate, penicillamine or dithiothreitol) to a lipid peroxidizing system inhibits the chain oxidation and catalyzes the dark decomposition of one (or several) of the luminescence precursors, following first order kinetics. The effect of temperature on the slow luminescence decay corresponds to an activation energy of 18.5kcal/mol. 相似文献
4.
Measurement of Lipid Peroxidation 总被引:16,自引:0,他引:16
Lipid peroxidation results in the formation of conjugated dienes, lipid hydroperoxides and degradation products such as alkanes, aldehydes and isoprostanes. The approach to the quantitative assessment of lipid peroxidation depends on whether the samples involve complex biological material obtained in vivo, or whether the samples involve relatively simple mixtures obtained in vituo. Samples obtained in vivo contain a large number of products which themselves may undergo metabolism. The measurement of conjugated diene formation is generally applied as a dynamic quantitation e.g. during the oxidation of LDL, and is not generally applied to samples obtained in vivo. Lipid hydroperoxides readily decompose, but can be measured directly and indirectly by a variety of techniques. The measurement of MDA by the TBAR assay is non-specific, and is generally poor when applied to biological samples. More recent assays based on the measurement of MDA or HNE-lysine adducts are likely to be more applicable to biological samples, since adducts of these reactive aldehydes are relatively stable. The discovery of the isoprostanes as lipid peroxidation products which can be measured by gas chromatography mass spectrometry or immunoassay has opened a new avenue by which to quantify lipid peroxidation in vivo, and will be discussed in detail. 相似文献
5.
《Free radical research》2013,47(1-5):273-278
A deficiency of choline and methionine is hepatocarcinogenic and is associated with an apparent increase in lipid peroxidation. In this study the susceptibility of microsomes and nuclei to ferritin-dependent lipid peroxidation is examined together with the status of the peroxidation- protective systems. Choline-methionine deficiency caused an increase in Se-independent GSH peroxidases (GSH transferase subunit 2) and membrane vitamin E but a decrease in Se-dependent GSH peroxidase and microsomal GSH peroxidase activity. Choline-methionine deficient microsomes and nuclei were 4-fold more susceptible to lipid peroxidation induced in vitro by physiological concentrations of ferritin/ascorbate/ADP; and the peroxidation was less effectively inhibited by GSH and soluble GSH peroxidases than controls. The results indicate that a decreased level of Se-dependent and membrane GSH peroxidases is involved in the increase in lipid peroxidation observed in choline-methionine deficiency. 相似文献
6.
The ability of sodium arsenite at concentrations of 10–2, 10–4, and 10–6 M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10–2 and 10–4 M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures, which led to suppression of the metabolic activity of cells. Arsenite at the concentration 10–6 M did not activate lipid peroxidation in cells. All of the tested arsenite concentrations inhibited the activity of -ketoglutarate dehydrogenase and pyruvate dehydrogenase in cells. The inference is made that the toxicity of arsenite may be related to its stimulating effect on intracellular lipid peroxidation. 相似文献
7.
《Free radical research》2013,47(5-6):419-431
(5-Nitro-2-furfuryliden)amino compounds bearing triazol-4-yl, benzimidazol-l-yl, pyrazol-l-yl, triazin-4-yl or related groups (a) stimulated superoxide anion radical generated by rat liver microsomes in the presence of NADPH and oxygen; (b) inhibited the NADPH-dependent, iron-catalyzed microsomal lipid peroxidation; (c) prevented the NADPH-dependent destruction of cytochrome P-450; (d) inhibited the NADPH-dependent microsomal aniline 4-hydroxylase activity; (e) failed to inhibit either the cumenyl hydroperoxide-dependent lipid peroxidation or the aniline-4-hydroxylase activity, except for the benzimidazol-l-yl and the substituted triazol-4-yl derivatives, which produced minor inhibitions. Reducing equivalents enhanced the benzimidazol-l-yl derivative inhibition of the cumenyl hydroperoxide-induced lipid peroxidation. The ESR spectrum of the benzimidazol-l-yl derivative, reduced anaerobically by NADPH-supplemented microsomes, showed characteristic spin couplings. Compounds bearing unsaturated nitrogen heterocycles were always more active than those bearing other groups, such as nifurtimox or nitrofurazone. The energy level of the lowest unoccupied molecular orbital was in fair agreement with the capability of nitrofurans for redox-cycling and related actions. It is concluded that nitrofuran inhibition of microsomal lipid peroxidation and cytochrome P-450-catalyzed reactions was mostly due to diversion of reducing equivalents from NADPH to dioxygen. Trapping of free radicals involved in propagating lipid peroxidation might contribute to the overall effect of the benzimidazol-l-yl and substituted triazol-4-yl derivitives. 相似文献
8.
Diaryl Tellurides as Inhibitors of Lipid Peroxidation in Biological and Chemical Systems 总被引:6,自引:0,他引:6
Carl-Magnus Andersson Ralph Brattsand Anders Hallberg Lars Engman Joachim Persson Peter Mold us Ian Cotgreave 《Free radical research》1994,20(6):401-410
Diaryl tellurides carrying electron-donating substituents in the para positions were found to efficiently inhibit peroxidation of rat hepatocytes, rat liver microsomes and a chlorobenzene solution of phosphatidylcholine. The most active compound in the microsomal assay, bis(4-dimethylaminophenyl) tellurite, showed an IC50-value of 30 nM. This compound also caused a dose-dependent delay of the onset of the linear phase of microsomal peroxidation stimulated by iron/ADP/ascorbate. The peak oxidation potentials of the diaryl tellurides (0.50-1.14 V in MeCN) correlated linearly with the IC50-values in this assay, with a point of inflection around 0.85 V. In the hepatocyte system, all compounds showed similar protective activity. It is proposed that diaryl tellurides exert an antioxidative effect by deactivating both peroxides and peroxyl radicals under the formation of telluroxides. These oxides may regenerate the active divalent organotellurides upon exposure to a suitable reducing agent. 相似文献
9.
Wen-Liang Song Georgios Paschos Susanne Fries Muredach P. Reilly Ying Yu Joshua Rokach Chih-Tsung Chang Pranav Patel John A. Lawson Garret A. FitzGerald 《The Journal of biological chemistry》2009,284(35):23636-23643
Isoprostanes (iPs) are prostaglandin (PG) isomers generated by free radical-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs). Urinary F2-iPs, PGF2α isomers derived from arachidonic acid (AA) are used as indices of lipid peroxidation in vivo. We now report the characterization of two major F3-iPs, 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI, derived from the ω-3 fatty acid, eicosapentaenoic acid (EPA). Although the potential therapeutic benefits of EPA receive much attention, a shift toward a diet rich in ω-3 PUFAs may also predispose to enhanced lipid peroxidation. Urinary 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI are highly correlated and unaltered by cyclooxygenase inhibition in humans. Fish oil dose-dependently elevates urinary F3-iPs in mice and a shift in dietary ω-3/ω-6 PUFAs is reflected by an increasing slope [m] of the line relating urinary 8, 12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI. Administration of bacterial lipopolysaccharide evokes a reversible increase in both urinary 8,12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI in humans on an ad lib diet. However, while excretion of the iPs is highly correlated (R2 median = 0.8), [m] varies by an order of magnitude, reflecting marked inter-individual variability in the relative peroxidation of ω-3 versus ω-6 substrates. Clustered analysis of F2- and F3-iPs refines assessment of the oxidant stress response to an inflammatory stimulus in vivo by integrating variability in dietary intake of ω-3/ω-6 PUFAs.Isoprostanes (iPs),2 a family of prostaglandin isomers, are generated initially in situ by free radical attack on polyunsaturated fatty acids (PUFAs) in cell membranes. There, they can be immunodetected and quantified by mass spectrometry (1). They are then cleaved by phospholipases (2), circulate in plasma, and are excreted in urine (3). F2-iPs, isomers of PGF2α (3), derived from peroxidation of arachidonic acid (AA), are the most studied species. F2-iPs can be quantified in normal animal and human biological fluids and tissues, implying ongoing lipid peroxidation under physiological conditions, despite replete and diversified endogenous antioxidant defense systems (4). The measurement of urinary F2-isoprostanes has been used to reflect lipid peroxidation noninvasively in several human diseases (5–8). In addition to their utility as markers of oxidant stress (OS), high concentrations of some F2-iPs also possess biological activity in vitro, including bronchoconstriction (9), vasoconstriction (10), platelet aggregation (11, 12), and adhesion (13). These effects result from iPs acting as incidental ligands at prostaglandin receptors. It is unknown whether this capacity of individual iPs to ligate prostanoid receptors has relevance to the concentration of the multiple endogenous iP species likely to be formed simultaneously under conditions of oxidant stress in vivo.iPs analogous to the F2-iPs may be formed from other fatty acid substrates (14–19), including the fish oil constituent, eicosapentaenoic acid (EPA) (20). Potentially beneficial effects of EPA consumption have been supported by a variety of epidemiological and interventional studies. EPA competes with AA for access to the cyclooxygenase enzymes (21), reducing production of AA-derived PGs (22, 23). This effect and/or substituted formation of EPA-derived PGs may explain the anti-inflammatory and cardioprotective effects ascribed to fish oils.The relatively unsaturated EPA and docosahexaenoic acid (DHA) in fatty fish are likely to be more susceptible to lipid peroxidation than AA, although it is unknown whether this might constrain beneficial effects derived from a shift in substrate-dependent enzymatic product formation. While F2-iPs and F3-iPs are excreted into urine in their original form, the F4-iPs formed from DHA (Fig. 1) are at least partly metabolized to F3-iPs before excretion (20, 24). Given the potential utility of noninvasive biomarkers of EPA and DHA peroxidation and our previous work with F2-iPs (25, 26), we sought to determine whether members of group VI (Fig. 1B), 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI (Fig. 1C) might be detectable in urine.Open in a separate windowFIGURE 1.F3-iPs derived from EPA. A, formation and metabolism of isoprostanes. AA is more abundant than EPA and DHA in cell membranes obtained from individuals consuming a Western diet. Isoprostanes are formed from the corresponding PUFA substrate in situ following free radical attack. F2-iPs and F3-iPs are excreted into urine in their original form, but F4-iPs are at least partly metabolized to F3-iPs before excretion. (F2-iPs: F2-isoprostanes; F3-iPs: F3-isoprostanes; F4-iPs: F4-isoprostanes). B, six types of F3-iPs. C, 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI. 相似文献
10.
Christos Kontogiorgis Dimitra Hadjipavlou-Litina 《Journal of enzyme inhibition and medicinal chemistry》2013,28(1):63-69
Several linear and angular coumarins designed and synthesised as possible anti-inflammatory and antioxidant agents were evaluated for their biological activities, using the carrageenin-induced rat paw oedema model. In general, the compounds were found to be potent anti-inflammatory agents. Compound (4) was found to possess protective properties in adjuvant-induced arthritis in rats. The compounds were found to interact with 1,1-diphenyl-2-picryl-hydrazyl stable free radical (DPPH) whereas most of them were essentially inactive in other tests. The anti-inflammatory activity seemed to be connected with their reducing activity. R M values were determined as an expression of their lipophilicity which was also calculated as clog P. Only a poor relationship existed between lipophilicity and anti-inflammatory activity. 相似文献
11.
Effects of melanins obtained from cultured Cladosporium cladosporidae fungi and Alpha grape on Fe2+-induced, Fe2+–ascorbate-induced, and NADPH-induced lipid peroxidation in rat liver, brain, and eye were studied. Melanins were shown to inhibit the accumulation of lipid peroxidation products in vitro. The inhibitory effects of melanins were not due to direct interactions of these pigments with superoxide anion (O
2
). However, melanins may interact with other free radicals. Melanins were demonstrated to have the ability to oxidize NADPH, which is probably one of the mechanisms of their antioxidant effects. 相似文献
12.
The phytotoxic effect of Cu via the photosynthetic electron transport system was studied with isolated spinach chloroplasts. Cu(II) ions induce a light-driven peroxidation of membrane lipids leading to ethylene formation, the latter dominating over a concurrent ethane production. Seemingly, the hydroxyl radical originating from superoxide anion is the starting reactive O2 species. Cu ions inhibit photosynthetic electron transport and apparently catalyze the formation of hydroxyl radical and Fenton-type reactions that result in destruction of unsaturated membrane fatty acids. The concept on the mode of action of Cu(II) and Cu(I) ions in lipid peroxidation as presented here suggests the influence of Cu on different reactions. Two sites are in the photosynthetic redox system; Cu participates in two Fenton-type reactions and in the conversion of ethyl radical to ethylene and ethane. 相似文献
13.
Bruna Tadolini Luciana Cabrini Carolina Menna Gavino Giovannzi Pinna Gabriele Hakim 《Free radical research》1997,27(6):563-576
In an experimental system where both Fe2+ autoxidation and generation of reactive oxygen species is negligible, the effect of FeCl2 and FeCl3 on the peroxidation of phosphatidylcholine (PC) liposomes containing different amounts of lipid hydroperoxides (LOOH) was studied; Fe2+ oxidation, oxygen consumption and oxidation index of the liposomes were measured. No peroxidation was observed at variable FeCl2/FeCl3 ratio when PC liposomes deprived of LOOH by triphenyl-phosphine treatment were utilized. By contrast, LOOH containing liposomes were peroxidized by FeCl2. The FeCl2 concentration at which Fe2+ oxidation was maximal, defined as critical Fe2+ concentration [Fe2+]*, depended on the LOOH concentration and not on the amount of PC liposomes in the assay. The LOOH-dependent lipid peroxidation was stimulated by FeCl3, addition; the oxidized form of the metal increased the average length of radical chains, shifted to higher values the [Fe2+]* and shortened the latent period. The iron chelator KSCN exerted effects opposite to those exerted by FeCl3 addition. The experimental data obtained indicate that the kinetics of LOOH-dependent lipid peroxidation depends on the Fe2+/Fe3+ ratio at each moment during the time course of lipid peroxidation. The results confirm that exogenously added FeCl3 does not affect the LOOH-independent but the LOOH-deendent lipid peroxidation; and suggest that the Feg, endogenously generated exerts a major role in the control of the LOOH-dependent lipid peroxidation. 相似文献
14.
Kinetic modelling overcomes some of the drawbacks of purely intuitive thinking in integrating information accumulated on chemical reactions involved in oxidative stress. However, it is important to assess if current knowledge about the reactions that mediate lipid peroxidation already allows satisfactory modelling of this process in near-to-physiological conditions. In this paper, a set of increasingly complex in vitro experiments on antioxidants (a-tocopherol and ascorbate) and lipid peroxidation in heterogeneous systems is simulated. Quantitative to semiquantitative agreement is found between experimental and simulation results. In addition, this theoretical analysis provided useful insights, suggested new hypotheses and experiments and pointed out relevant aspects needing further research. The results encourage and serve as partial validation for the formulation of relatively detailed mathematical models of in vivo lipid peroxidation. Some important aspects of the formulation and analysis of such models are discussed. 相似文献
15.
Ibrahim M. El-Deen El-Zend Manar A. Tantawy Mohamed A. Barakat Lamiaa A. A. 《Russian Journal of Bioorganic Chemistry》2022,48(2):380-390
Russian Journal of Bioorganic Chemistry - A series of coumarin and aza-coumarin derivatives (II–IX) were synthesized and identified using IR, 1H NMR, and 13C NMR spectral data. All the... 相似文献
16.
Giorgio Minotti Marco di Gennaro Domenico D'ugo Pierluigi Granone 《Free radical research》1991,12(1):99-106
Possible sources of iron for lipid peroxidation are described and discussed. In particular. evidence is presented that microsomes contain ferric nonheme iron which may participate in formation of lipid oxidants. provided reductants are available to favor its mobilization from membrane binding sites. Aging-and tumor-associated changes of this microsomal pool of nonheme iron are also described and discussed from biochemical and biomedical viewpoints. 相似文献
17.
《Bioscience, biotechnology, and biochemistry》2013,77(5):955-957
Bovine lactoferrin (LF) and lactoferricin B (LFcin B), an antimicrobial peptide derived from bovine LF, inhibited thiobarbituric acid-reactive substance (TBARS) formation in a iron/ascorbate-induced liposomal phospholipid peroxidation system. The inhibition of TBARS formation occurred with N-acylated 9-mer peptides with a core sequence of LFcin B and, compared to LFcin B, their antioxidant effect was clearly observed at a concentration almost 100 times lower. 相似文献
18.
19.
Lipid Peroxidation in Rat Brain Cortical Slices as Measured by the Thiobarbituric Acid Test 总被引:5,自引:3,他引:5
Abstract: Malonaldehyde formation by cortical brain slices from rat brain was determined as a function of incubation time and of oxygen pressure. This substance, a byproduct of lipid peroxidation, was detected by the thiobarbituric acid test. Significant amounts of malonaldehyde were formed by brain slices during incubation in the 0.2 (air) to 10 atm oxygen range, and a portion of it was released into the medium. The rate of malonaldehyde formation was the highest during the first 10 min. Elevation of oxygen pressure above 1 atm caused further increments in malonaldehyde production with kinetic properties similar to that seen at 1 atm pressure, but the increments per additional oxygen pressure were diminishing. The formation of a given amount of malonaldehyde can be expressed as a function of atm oxygen × min. This function has the shape of a saturation curve approaching a maximum at around 300 atm × min. The results indicate extensive lipid peroxidation in brain slices under standard incubation conditions. 相似文献
20.