首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A novel single cell screening system was constructed using a yeast cell chip in combination with the yeast cell surface engineering [NanoBiotechnology 2005, 1, 105-111]. Enzymes or functional proteins displayed on a yeast cell surface can be used as a protein cluster. To achieve high-throughput screening of protein libraries on the cell surface, a catalytic reaction by a single cell-surface-engineered yeast cell was successfully carried out in the microchamber on the yeast cell chip. After screening, to replicate a target cell for use in measuring of activity, DNA sequencing, and preservation, a novel single cell cultivation system in the yeast cell chip was constructed. To avoid damage of the rapid dry up of medium in the microchamber array, the yeast cell chip was modified with a protection sheet, so that the modified chip was like a micro-culture tank constructed on the yeast cell chip microchamber. As a result, single yeast cell cultivation in the yeast cell chip microchamber was observed, and the modified yeast cell chip was evaluated to be good for a single cell selection. The improvement showed that the single cell screening system coupled with the single cell cultivation using the modified yeast cell chip may be superior to that by a cell sorter for the isolation of a target cell and its practical use.  相似文献   

2.
It is important to distinguish a living/dead cell in cell culture, especially in the regenerate medicine field including cell therapy, since those cells are usually in short supply and consequently the ex vivo culture process should be operated strictly. Conventional methods for distinguishing a living from a dead cell usually require labeling with a dye, which spoils the culture of the cell. Here we show a simple noninvasive method for diagnosing a dead or alive cell with a probe beam. If a cell is alive, the active transport of materials across the cell membrane causes a change of concentration gradients, and this change further induces a change of deflection of a probe beam passing through a vicinity of the cell membrane. If a cell is dead, no or little change in deflection of the probe beam is induced because no or little active materials movement across the cell membrane exists. The deflection of the probe beam is monitored, and judgment on whether a cell is dead or alive from the deflection signal agreed with the conventional decision.  相似文献   

3.
The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used dissipative particle dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape, nucleus and slit size on the cell transmigration through the slit were investigated. Under a fixed driving force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area by merely 9.3 % can enable the cell to pass through the narrow slit. Therefore, the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entrance but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.  相似文献   

4.
V G Nazarenko 《Biofizika》1978,23(2):332-337
A series of mathematical models of cell population is analysed. The mitotic activity of stem cells of this population is controlled by population density. The effect of different factors on autooscillation regimes has been studied. The effect of reversible stages of cell differentiation is analysed, as well as that of cell losses at each stage of differentiation. The behaviour of cell population under the conditions of a limited supply of the limiting substrate was analysed. The effect of cell doubling at each differentiation stage on the stability of the population was studied too.  相似文献   

5.
Analysis of the cytoskeleton in morphogenetically active plant cells allows us to propose a unified concept for the structural organization of eukaryotic cells. Their cytoarchitecture is determined by two principal structural complexes: nucleus-microtubule-based cell bodies ("bugs") and plasma-membrane-F-actin-based cell periphery complexes ("cages"). There are dynamic interactions between each of these entities in response to extracellular and intracellular signals. In the case of the cell body, these signals determine its polarization, rotation and migration. Interactions between cell body and cell periphery complexes determine cell growth polarity and morphogenesis throughout the eukaryotic kingdom.  相似文献   

6.
A method to detect an enzymatic reaction in a single living cell using an atomic force microscope equipped with an ultra-thin needle (a nanoneedle) and a fluorescent probe molecule was developed. The nanoneedle enables the low-invasive delivery of molecules attached onto its surface directly into a single cell. We hypothesized that an enzymatic reaction in a cell could be profiled by monitoring a probe immobilized on a nanoneedle introduced into the cell. In this study, a new probe substrate (NHGcas546) for caspase-3 activity based on fluorescent resonance energy transfer (FRET) was constructed and fixed on a nanoneedle. The NHGcas546-modified nanoneedle was inserted into apoptotic cells, in which caspase-3 is activated after apoptosis induction, and a change in the emission spectrum of the immobilized probe could be observed on the surface of the nanoneedle. Thus, we have developed a successful practical method for detecting a biological phenomenon in a single cell. We call the method MOlecular MEter with Nanoneedle Technology (MOMENT).  相似文献   

7.
Positive selection is required for B cell differentiation, as indicated by the requirement for expression of the pre-B cell receptor (pre-BCR) and the BCR at the pre-B and immature B cell stages, respectively. Positive selection mediated by a tonic signal from these receptors is sufficient to drive B cell differentiation beyond the pre-B and immature B cell stages, but it is unclear whether additional positive selection signals are required for differentiation to a mature B-2 cell. We have identified a population of Ig transgenic B cells that differentiatively arrest at a transitional B cell stage in the spleen. They exhibit no evidence of Ag encounter or negative selection and can differentiate to mature B-2 cells in vivo upon weak BCR stimulation or adoptive transfer to irradiated hosts. These data are consistent with a requirement for a ligand-mediated BCR signal for differentiation to a mature B-2 cell.  相似文献   

8.
Filaments of Griffithsia pacifica replace dead cells by the process of cell repair. When an intercalary cell is killed, but its cell wall remains intact holding the two halves of the plant together, the cell above it produces a repair rhizoid cell; the cell below it produces a specialized, rhizoid-like repair shoot cell. The repair rhizoid and shoot grow towards each other, meet, and fuse to form a single shoot cell. Evidence from observations of cell repair in vivo has indicated that the repair rhizoid produces a hormone or hormones which induce the production of the repair shoot, maintain the rhizoid-like morphology and growth of the repair shoot, and attract it to the repair rhizoid for fusion. This hormone has been named rhodomorphin. Using an artificial cell-fusion system we show that repair rhizoids and normal rhizoids, but no shoot cell, can induce decapitated filaments to form repair shoot cells. Decapitated filaments form repair shoot cells only when they are exposed to the hormone within 4–6 h after decapitation; after this time they lose their sensitivity to the hormone. A method has been developed for isolating, and assaying for, the cell-fusion hormone. Rhodomorphin retains its activity for several days at room temperature and for at least two years at-16° C.  相似文献   

9.
During the electroporation cell membrane undergoes structural changes, which increase the membrane conductivity and consequently lead to a change in effective conductivity of a cell suspension. To correlate microscopic membrane changes to macroscopic changes in conductivity of a suspension, we analyzed the effective conductivity theoretically, using two different approaches: numerically, using the finite elements method; and analytically, by using the equivalence principle. We derived the equation, which connects membrane conductivity with effective conductivity of the cell suspension. The changes in effective conductivity were analyzed for different parameters: cell volume fraction, membrane and medium conductivity, critical transmembrane potential, and cell orientation. In our analysis we used a tensor form of the effective conductivity, thus taking into account the anisotropic nature of the cell electropermeabilization and rotation of the cells. To determine the effect of cell rotation, as questioned by some authors, the difference between conductivity of a cell suspension with normally distributed orientations and parallel orientation was also calculated, and determined to be <10%. The presented theory provides a theoretical basis for the analysis of measurements of the effective conductivity during electroporation.  相似文献   

10.
Holley  M. C. 《Hydrobiologia》1991,(1):35-38

Many soft bodied coelenterates are highly deformable or contractile. In the absence of hard skeletal elements, the epithelia are subjected to mechanical forces which cause a wide range of structural changes in the component epithelial cells. What kinds of structural change occur and how are the cells adapted to them? These questions are addressed with reference to cell surface area, cell membranes, cell junctions and epithelial cilia.

  相似文献   

11.
Plant cell expansion is controlled by a fine‐tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in‐depth knowledge of cell wall mechanics. Pollen tubes are tip‐growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20–90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM‐based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.  相似文献   

12.
To investigate the role of soluble T cell products during B cell differentiation more fully, we have produced T cell hybridomas by the fusion of normal helper T cells with the T cell lymphoma BW5147. In this report we describe the production of one such hybrid, 14G3, the subclone 14G3.1F2, and the functional activity of the constitutive product. The hybrid supernatant acts exclusively in antigen-nonspecific, but antigen-dependent, promotion of B cell differentiation. It is optimally effective in the presence of small amounts of EL4 supernatant. It does not itself contain any detectable IL 2 or BCGF or interferon activity, however. 14G3.1F2 activity is probably an important component of the conventional TRF preparations produced by mixed lymphocyte populations, and will be useful in further dissection of the contributions of different soluble T cell products to B cell differentiation.  相似文献   

13.
14.
15.
Hybridoma SPO1 cells were immobilized in calcium alginate beads and were further grown in a fluidized-bed perfusion system with a protein-free medium. The presence of serum in the steps of entrapment was shown to be helpful for the preservation of cell viability. Each step during immobilization was investigated with respect to the extent of cell damage caused. The immobilization process using small beads caused a lower cell viability initially but allowed a higher rate of cell growth subsequently, compared to those in large beads. In a perfusion system for the continuous production of monoclonal antibodies (MAb), the viable cell density reached 2×107 cells per ml of beads with a viability of 40%. Compared with the cells in suspension culture, the immobilized SPO1 cells showed higher viable cell based specific rates of substrate uptake (glucose and glutamine) and of MAb production. A significant drop in the formation of lactate after the cell growth entered a steady state suggested a higher activity of the Tricarboxylic Acid Cycle in the cells when the cell density became high.  相似文献   

16.
Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non‐invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV‐irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific.  相似文献   

17.
It is known that freshly dissociated thyroid cell clusters form follicles in suspension culture. Thyroid epithelial cell lines, grown for many generations in vitro, fail to show colloid-containing lumina when cultured as monolayers. Several thyroid cell lines, some transformed, have been tested with respect to their ability to form extracellular lumina when transferred from monolayer to suspension culture. One cell line in particular, the T78 cell line, showed this property when cultured in suspension. Lumina formed within 3 days even in the absence of added thyrotropin (TSH). The ultrastructure of lumina within cell aggregates resembled that of the thyroid follicle in vivo. The ability to undergo morphogenesis may therefore be an intrinsic property of thyroid epithelial cells which is retained for a large number of generations in vitro and is revealed by proper culture conditions. The shift from monolayer to suspension culture may thus lead to the expression of a thyroid differentiated function such as the formation of follicle-like structures.  相似文献   

18.
The use of stable cell lines expressing fusions with green fluorescent protein(GFP) has increased significantly in recent years. In this study we have useda range of complimentary analytical techniques to examine the characteristicsof a cell line stably expressing a EGFP cell cycle sensor relative to parentalU2OS cells. Analysis of cell cycle duration and cell cycle phase distribution bycell growth assays and flow cytometry revealed that the two cell lines hadidentical doubling times and cell cycle distributions. Measurement of EGFPfusion protein mRNA by quantitative RT-PCR indicated a EGFP sensorexpression level equivalent to endogenous Cyclin B1 (7000 copies/cell in G2).Microarray analysis showed a 0.9% (>2 fold at p  相似文献   

19.
Summary  Until now researchers have used a monolayer of cultured cells to investigate cell motility toward an injured cell. However, we suspect that, when using this method, adjacent cells move to the free space due to relief of contact inhibition. The current study was designed to investigate the cell motility nearby an injured cell in varying cell connectivity. A lowpower laser beam was used to damage one cell selectively with the silver coating beads. After injury, we observed the cell motility in three different cell types: (1) those immediately adjacent to the injured cell, 92) those removed from the injured cell by interposition of another cell, and (3) those removed from the injured cell by free space. The cells that are in direct contact with the injured cell moved toward the injured cell within 1.5–3.0 h. Indirectly connected cells and cells with no contact, on the other hand, showed no significant movement toward the injured cell. This suggests that the cell motility toward the cell injury is not only due to relief of contact inhibition but might also be caused by cell-to-cell signaling via cell connection. The current method will provide a tool to create a cell injury without damaging adjacent cells.  相似文献   

20.
The poles of each Caulobacter crescentus cell undergo morphological development as a function of the cell cycle. A single flagellum assembled at one pole during the asymmetric cell division is later ejected and replaced by a newly synthesized stalk when the motile swarmer progeny differentiates into a sessile stalked cell. The removal of the flagellum during the swarmer-to-stalked cell transition coincides with the degradation of the FliF flagellar anchor protein. We report here that the cell cycle-dependent turnover of FliF does not require the structural components of the flagellum itself, arguing that it is the initial event leading to the ejection of the flagellum. Analysis of a polar development mutant, pleD, revealed that the pleD gene was required for efficient removal of FliF and for ejection of the flagellar structure during the swarmer-to-stalked cell transition. The PleD requirement for FliF degradation was also not dependent on the presence of any part of the flagellar structure. In addition, only 25% of the cells were able to synthesize a stalk during cell differentiation when PleD was absent. The pleD gene codes for a member of the response regulator family with a novel C-terminal regulatory domain. Mutational analysis confirmed that a highly conserved motif in the PleD C-terminal domain is essential to promote both FliF degradation and stalk biogenesis during cell differentiation. Signalling through the C-terminal domain of PleD is thus required for C. crescentus polar development. A second gene, fliL, was shown to be required for efficient turnover of FliF, but not for stalk biogenesis. The possible roles of PleD and FliL in C. crescentus polar development are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号