首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Convergence is a significant evolutionary phenomenon. Arrival at similar morphologies from different starting points indicates a strong role for natural selection in shaping morphological phenotypes. There is no evidence yet of convergence in the developmental mechanisms that underlie the evolution of convergent developmental phenotypes. Here we report the expression domains in sea urchins of two important developmental regulatory genes ( Orthodenticle and Runt), and show evidence of molecular convergence in the evolution of direct-developing sea urchins. Indirect development is ancestral in sea urchins. Evolutionary loss of the feeding pluteus stage and precocious formation of the radially symmetric juvenile has evolved independently in numerous sea urchin lineages, thus direct development is an evolutionary convergence. Indirect-developing species do not express Otx during the formation of their five primordial tube feet, the ancestral condition. However, each direct-developing urchin examined does express Otx in the tube feet. Otx expression in the radial arms of direct-developing sea urchins is thus convergent, and may indicate a specific need for Otx use in direct development, a constraint that would make direct development less able to evolve than if there were multiple molecular means for it to evolve. In contrast, Runt is expressed in tube feet in both direct- and indirect-developing species. Because echinoderms are closely related to chordates and postdate the protostome/deuterostome divergence, they must have evolved from bilaterally symmetrical ancestors. Arthropods and chordates use Otx in patterning their anterior axis, and Runt has multiple roles including embryonic patterning in arthropods, and blood and bone cell differentiation in vertebrates. Runt has apparently been co-opted in echinoderms for patterning of pentamery, and Otx in pentameral patterning among direct-developing echinoids. The surprisingly dynamic nature of Otx evolution reinvigorates debate on the role of natural selection vs shared ancestry in the evolution of novel features.  相似文献   

2.
The trophic interactions of sea urchins are known to be the agents of phase shifts in benthic marine habitats such as tropical and temperate reefs. In temperate reefs, the grazing activity of sea urchins has been responsible for the destruction of kelp forests and the formation of 'urchin barrens', a rocky habitat dominated by crustose algae and encrusting invertebrates. Once formed, these urchin barrens can persist for decades. Trophic plasticity in the sea urchin may contribute to the stability and resilience of this alternate stable state by increasing diet breadth in sea urchins. This plasticity promotes ecological connectivity and weakens species interactions and so increases ecosystem stability. We test the hypothesis that sea urchins exhibit trophic plasticity using an approach that controls for other typically confounding environmental and genetic factors. To do this, we exposed a genetically homogenous population of sea urchins to two very different trophic environments over a period of two years. The sea urchins exhibited a wide degree of phenotypic trophic plasticity when exposed to contrasting trophic environments. The two populations developed differences in their gross morphology and the test microstructure. In addition, when challenged with unfamiliar prey, the response of each group was different. We show that sea urchins exhibit significant morphological and behavioural phenotypic plasticity independent of their environment or their nutritional status.  相似文献   

3.
4.
SUMMARY The genetic basis for the evolution of development includes genes that encode proteins expressed on the surfaces of sperm and eggs. Previous studies of the sperm acrosomal protein bindin have helped to characterize the adaptive evolution of gamete compatibility and speciation in sea urchins. The absence of evidence for bindin expression in taxa other than the Echinoidea has limited such studies to sea urchins, and led to the suggestion that bindin might be a sea urchin-specific molecule. Here we characterize the gene that encodes bindin in a broadcast-spawning asterinid sea star ( Patiria miniata ). We describe the sequence and domain structure of a full-length bindin cDNA and its single intron. In comparison with sea urchins, P. miniata bindin is larger but the two molecules share several general features of their domain structure and some sequence features of two domains. Our results extend the known evolutionary history of bindin from the Mesozoic (among the crown group sea urchins) into the early Paleozoic (and the common ancestor of eleutherozoans), and present new opportunities for understanding the role of bindin molecular evolution in sexual selection, life history evolution, and speciation among sea stars.  相似文献   

5.
Existing radiations in a spatially limited system such as an oceanic island may limit the ecological opportunity experienced by later colonists, resulting in lower macroevolutionary rates for secondary radiations. Additionally, potential colonists may be competitively excluded by these incumbent (resident) species, unless they are biologically distinct (biotic filtering). The extant phenotypic diversity of secondary colonists may thus be impacted by lower rates of phenotypic evolution, exclusion from certain phenotypes, and transitions to new morphotypes to escape competition from incumbent lineages. We used geometric morphometric methods to test whether the rates and patterns of mandibular evolution of the Luzon “old endemic” rodent clades, Phloeomyini and Chrotomyini, are consistent with these predictions. Each clade occupied nearly completely separate shape space and partially separate size space. We detected limited support for decelerating and clade‐specific evolutionary rates for both shape and size, with strong evidence for a shift in evolutionary mode within Chrotomyini. Our results suggest that decelerating phenotypic evolutionary rates are not a necessary result of incumbency interactions; rather, incumbency effects may be more likely to determine which clades can become established in the system. Nonincumbent clades that pass a biotic filter can potentially exhibit relatively unfettered evolution.  相似文献   

6.
Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification.  相似文献   

7.
Evolution and adaptative radiations in echinoids. Echinoids (sea urchins) originated in the Early Paleozoic and, after a first period of diversification during that era, participated in an intense evolutionary radiation during the Mesozoic and Cenozoic. In the context of a reconsideration of homologies for echinoderm body regions, we present several major aspects of echinoid evolution: the origins of irregularity and bilateral symmetry; a model of radiation exemplified by the spatangoids; the diversification of modes of echinoid reproduction. These examples allow us to understand the extent of and capacity for innovation demonstrated by sea urchins during their post-Paleozoic radiation.  相似文献   

8.
Parallel phenotypic evolution occurs when independent populations evolve similar traits in response to similar selective regimes. However, populations inhabiting similar environments also frequently show some phenotypic differences that result from non‐parallel evolution. In this study, we quantified the relative importance of parallel evolution to similar foraging regimes and non‐parallel lake‐specific effects on morphological variation in European whitefish (Coregonus lavaretus). We found evidence for both lake‐specific morphological characteristics and parallel morphological divergence between whitefish specializing in feeding on profundal and littoral resources in three separate lakes. Foraging specialists expressed similar phenotypes in different lakes in both overall body shape and selected measured morphological traits. The morphology of the two whitefish specialists resembled that predicted from other fish species, supporting the conclusion of an adaptive significance of the observed morphological characteristics. Our results indicate that divergent natural selection resulting from foraging specialization is driving and/or maintaining the observed parallel morphological divergence. Whitefish in this study may represent an early stage of divergence towards the evolution of specialized morphs.  相似文献   

9.
Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model‐based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species‐level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors.  相似文献   

10.
常亚青  李云霞  罗世滨  赵冲 《生态学报》2013,33(9):2754-2760
研究了较长时间生活在3种不同实验遮蔽条件下海刺猬(Glyptocidaris crenularis)的遮蔽行为特点。结果表明:不同生活环境下海刺猬都保持着遮蔽行为。生活在以贝壳作为遮蔽材料环境下(遮蔽组)和以砖块作为掩蔽材料环境下(掩蔽组)的海刺猬初次遮蔽耗时要显著短于生活在无遮蔽(或掩蔽)材料环境下(空白组)的海刺猬(N=3,P<0.05)。3组海刺猬用于遮蔽的贝壳总数和有遮蔽行为的海刺猬总数都呈现先增加后趋于平稳的趋势。掩蔽组有遮蔽行为的海刺猬总数要显著多于遮蔽组和空白组(P<0.05),后两者差异不显著。3组海刺猬用于遮蔽的贝壳总数差异不显著(P>0.05)。海刺猬遮蔽时对两种贝壳(菲律宾蛤仔和贻贝)存在显著的选择差异(P<0.05)。生活环境中一段时间内遮蔽物的缺失并不会使其失去这种行为,但是会在一定程度上影响该行为的强度。因此,光照很可能是海刺猬遮蔽行为的一个进化压力,该行为也许只是作为一种避光策略。海刺猬对遮蔽材料具有显著的选择性,这可能与遮蔽材料自身特征和海刺猬的生理状态相关。  相似文献   

11.
Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male‐biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses.  相似文献   

12.
13.
The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation.  相似文献   

14.
Phenotypic evolution in contemporary populations can generally be witnessed only when novel selective forces produce rapid evolution. Examples of conditions that have led to rapid evolution include drastic environmental change, invasion of a new predator, or a host-range expansion. In cyclical parthenogens, however, yearly cycles of phenotypic evolution may occur due to the loss of adaptation during recombination in the sexual phase (genetic slippage), permitting an opportunity to observe adaptive evolutionary change in contemporary populations that are not necessarily subject to new patterns of natural selection. In insect herbivores, comparative studies suggest that morphological features that aid individuals in remaining on the plant or exploiting it as a food source are likely targets for selection. Here, we estimated the genetic variability of morphological traits in a cyclical parthenogen, the pea aphid (Acyrthosiphon pisum), to determine the potential for their evolution and we tested the hypothesis that size and/or shape evolves by clonal selection during one season of parthenogenetic reproduction. Genetic variation in a set of morphological traits was estimated using laboratory-reared descendents of clones collected from a single alfalfa field in May 1988 and April 1989 (henceforth, the “early” collections). In both years, there was significant clonal heritability early in the season both for overall morphology and for several individual aspects of size and shape. Because the course of short-term evolutionary change in the multivariate phenotype is a function of patterns of genetic covariance among characters, genetic correlations between size and 12 shape variables were also estimated for these early collections. A comparison between the mean phenotype of each early collection and that of a corresponding “late” collection made from the same field seven to eight clonal generations later in the same years revealed qualitatively similar changes in the average multivariate morphological phenotypes between the time periods in both years, although the difference was only significant for the 1989 samples. The pattern of genetic correlations that we estimated early in the 1989 season between overall size and various shape variables suggests that the observed short-term evolutionary changes in shape could have been due to natural selection acting only to increase overall size. We tested this hypothesis by estimating selection on size using a separate data set in which both demographic and morphological variables were measured on individuals reared under field conditions. Highly significant regressions of individual relative fitness on size were found for two major fitness components. Thus, it is likely that the evolutionary change in morphology that we observed is attributable to natural selection, possibly acting primarily through body size. A shift back to smaller size between the late 1988 and early 1989 collections from the same field suggests that either a cost of recombination or opposing selective forces during overwintering may produce persistent yearly cycles of morphological evolution in this cyclically parthenogenetic species.  相似文献   

15.
16.
Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution.  相似文献   

17.
Bilaterally symmetrical, “regular” sea urchins in the Family Echinometridae (Class Echinoidea; Phylum Echinodermata) were found to lack a locomotor anterior. Heterocentrotus mammillatus and Echinometra mathaei were observed while locomoting. Members of both ellipsoidal species were found to proceed with their short or long axis foremost with statistically equivalent frequencies. This finding demonstrates that the evolution of bilateral symmetry is not always accompanied by the evolution of a locomotor “anterior” end. The elliptical echinometrid sea urchins provide a particularly appropriate study group for investigating the relationship between the evolution of body form and locomotor behavior. Although the radially symmetrical regular sea urchins, from which the echinometrids sprang, lack a locomotor anterior, all “irregular” echinoids, which are also derived from a regular ancestor but are bilaterally symmetrical, possess an “obligate” locomotor anterior. The symmetry and behavior exhibited by the elliptical echinometrid sea urchins therefore demonstrates that the first irregular echinoids (which exhibit bilateral symmetry by definition) need not have possessed a locomotor anterior as they do today.  相似文献   

18.
Parasites can affect host phenotypes, influencing their ecology and evolution. Host morphological changes occurring post-infection might result from pathological by-products of infection, or represent adaptations of hosts or parasites. We investigated the morphology of three-spined sticklebacks, Gasterosteus aculeatus , from a population naturally infected with Schistocephalus solidus , which grows to large sizes in their body cavity. We examined local effects of infection on trunk shape, which are imposed directly by the bulk of the growing parasite, and distant effects on head morphology. We show that trunk shape differed between infection classes, and was affected more severely in fish with heavier total parasite mass. We further show unexpected differences in head morphology. The heads of infected fish were reduced in size and differently shaped to those of non-infected fish, with infected fish having deeper heads. Importantly, both head size and shape were also affected more severely in fish with heavier total parasite mass. This latter result suggests that differences in morphology are caused by post-infection changes. Such changes may be incidental, evolutionarily neutral 'side effects' of infection. However, because head morphology affects foraging ecology, such changes are likely to have fitness consequences for hosts, and may constitute adaptations, either of hosts or of parasites. We discuss our finding in the context of the evolution of phenotypic plasticity, and suggest testable hypotheses examining the proximate mechanisms underlying these morphological effects and their potential evolutionary basis.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 759–768.  相似文献   

19.
Modern morphometrics, especially geometric morphometrics, is a powerful tool for modeling the evolution and development of the phenotype. Complicated morphological transformations can be simulated by using standard evolutionary genetic equations for processes such as selection and drift in the same morphospaces that are used for empirical morphometric studies. Such applications appear to be consistent with the theory of quantitative evolution of the phenotype. Nevertheless, concerns exist whether simulations of phenotypic changes directly in morphospaces is realistic because trajectories traced in such spaces describe continuous gradations in the phenotype and because the gain and loss of structures is often impossible because morphospaces are necessarily constructed from variables shared in common by all the phenotypes being considered. Competing models of phenotypic change emphasize morphological discontinuity and novelty. Recently developed models of phenotypic evolution that introduce a “phenotypic landscape” between evolutionary genetic constructs like the adaptive landscape and morphospace may correct this shortcoming.  相似文献   

20.
The architecture of gene action during development is relevant to phenotypic evolution as it links genotype to morphological phenotype. Analysis of development at the level of cell fate specification mechanisms illuminates some of the properties of developmental evolution. In this article, we first review examples of evolutionary change in mechanisms of cell fate specification, with an emphasis on evolution in the dependence on inductive signaling and on evolution of the mechanisms that result in spatial asymmetries. We then focus on properties of development that bias possible phenotypic change and present how the distribution of phenotypes that are available by mutational change of the starting genotype can be experimentally tested by systematic mutagenesis. We finally discuss ways in which selection pressures on phenotypes can be inferred from a comparison of the phenotypic spectrum found on mutation with that found in the wild.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号