首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.  相似文献   

2.
《Genomics》2021,113(3):1396-1406
Rice is one of the most important cereal crops, providing the daily dietary intake for approximately 50% of the global human population. Here, we re-sequenced 259 rice accessions, generating 1371.65 Gb of raw data. Furthermore, we performed genome-wide association studies (GWAS) on 13 agronomic traits using 2.8 million single nucleotide polymorphisms (SNPs) characterized in 259 rice accessions. Phenotypic data and best linear unbiased prediction (BLUP) values of each of the 13 traits over two years of each trait were used for the GWAS. The results showed that 816 SNP signals were significantly associated with the 13 agronomic traits. Then we detected candidate genes related to target traits within 200 kb upstream and downstream of the associated SNP loci, based on linkage disequilibrium (LD) blocks in the whole rice genome. These candidate genes were further identified through haplotype block constructions. This comprehensive study provides a timely and important genomic resource for breeding high yielding rice cultivars.  相似文献   

3.
We analysed 76 accessions of the medicinal and nutritive rice (Oryza sativa) landrace Njavara (Shashtika in Sanskrit) and 67 traditional cultivars of Kerala state using phenotypic traits and microsatellite markers. Multivariate analyses of 13 quantitative phenotypic traits revealed two distinct clusters, the Njavara accessions and the traditional cultivars (Qst = 0.4753). Njavara accessions belonging to the same morphotype were clustered together, although no specific pattern could be deciphered from the clustering of traditional cultivars. A total of 222 alleles were generated at the 24 microsatellite loci, with a mean number of 4.42 and 6.623 alleles per locus and a mean gene diversity (He) of 0.479 and 0.596 in Njavara and traditional cultivars, respectively. Different diversity analyses clearly separated Njavara and traditional cultivars from each other. As with the phenotypic analysis, Njavara accessions clustered according to their morphotypes, but the topology of the two dendrograms were different. However, the clustering pattern of traditional cultivars in genotypic dendrogram was inconsistent with that of phenotypic dendrogram. The scented rice cultivars formed a distinct cluster while the remaining traditional cultivars were clustered according to their photosensitivity. Significant (P < 0.0000) partitioning of molecular diversity was recorded between Njavara and traditional cultivars (Fst = 0.4293), within Njavara types (Fst = 0.5616) and traditional cultivars (Fst = 0.2546). The results indicate that Njavara is a cryptic variant within the traditional rice gene pool in Kerala. The study provided valuable information on the genetic structure and population differentiation of traditional rice cultivars in Kerala, which are relevant in breeding and conservation.  相似文献   

4.
《Genomics》2021,113(3):1037-1047
The 297 winter rice accessions of Assam, North East India were genotyped by sequencing (GBS). The 50,985 high-quality SNPs were filtered and assigned to 12 rice chromosomes. The population structure analysis revealed three major subgroups SG1, SG2, and SG3 consisting of 30, 8, and 143 accessions respectively. The remaining 116 accessions were grouped as admixture population. Phenotypic data were recorded on13 agronomical traits for genome-wide association studies (GWAS). The 60 significant marker-trait associations (MTAs) were identified for 11 agronomical traits, which explained 0 to 15% of phenotypic variance (PV). A QTL ‘hot spot’ was detected near the centromeric region on chromosome 6. The identified QTLs may be validated and utilized in ‘genomics assisted breeding’ for improvement of existing rice cultivars of Assam and North East India.  相似文献   

5.
6.
Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild‐to‐weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed‐shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations.  相似文献   

7.
Barley (Hordeum vulgare L.) is a major cereal grain widely used for livestock feed, brewing malts and human food. Grain yield is the most important breeding target for genetic improvement and largely depends on optimal timing of flowering. Little is known about the allelic diversity of genes that underlie flowering time in domesticated barley, the genetic changes that have occurred during breeding, and their impact on yield and adaptation. Here, we report a comprehensive genomic assessment of a worldwide collection of 895 barley accessions based on the targeted resequencing of phenology genes. A versatile target‐capture method was used to detect genome‐wide polymorphisms in a panel of 174 flowering time‐related genes, chosen based on prior knowledge from barley, rice and Arabidopsis thaliana. Association studies identified novel polymorphisms that accounted for observed phenotypic variation in phenology and grain yield, and explained improvements in adaptation as a result of historical breeding of Australian barley cultivars. We found that 50% of genetic variants associated with grain yield, and 67% of the plant height variation was also associated with phenology. The precise identification of favourable alleles provides a genomic basis to improve barley yield traits and to enhance adaptation for specific production areas.  相似文献   

8.
Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations is of great importance and a prerequisite for association mapping. In this study, 100 genome-wide simple sequence repeat (SSR) markers were used to assess genetic diversity, population structure, and LD of 416 rice accessions including landraces, cultivars and breeding lines collected mostly in China. A model-based population structure analysis divided the rice materials into seven subpopulations. 63% of the SSR pairs in these accessions were in LD, which was mostly due to an overall population structure, since the number of locus pairs in LD was reduced sharply within each subpopulation, with the SSR pairs in LD ranging from 5.9 to 22.9%. Among those SSR pairs showing significant LD, the intrachromosomal LD had an average of 25–50 cM in different subpopulations. Analysis of the phenotypic diversity of 25 traits showed that the population structure accounted for an average of 22.4% of phenotypic variation. An example association mapping for starch quality traits using both the candidate gene mapping and genome-wide mapping strategies based on the estimated population structure was conducted. Candidate gene mapping confirmed that the Wx and starch synthase IIa (SSIIa) genes could be identified as strongly associated with apparent amylose content (AAC) and pasting temperature (PT), respectively. More importantly, we revealed that the Wx gene was also strongly associated with PT. In addition to the major genes, we found five and seven SSRs were associated with AAC and PT, respectively, some of which have not been detected in previous linkage mapping studies. The results suggested that the population may be useful for the genome-wide marker–trait association mapping. This new association population has the potential to identify quantitative trait loci (QTL) with small effects, which will aid in dissecting complex traits and in exploiting the rich diversity present in rice germplasm.  相似文献   

9.
10.

Key message

The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world.

Abstract

Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.  相似文献   

11.
12.
Phenotypic plasticity of plants in response to environmental changes is important for adapting to changing climate. Less attention has been paid to exploring the advantages of phenotypic plasticity in resource‐rich environments to enhance the productivity of agricultural crops. Here, we examined genetic variation for phenotypic plasticity in indica rice (Oryza sativa L.) across two diverse panels: (1) a Phenomics of Rice Adaptation and Yield (PRAY) population comprising 301 accessions; and (2) a Multi‐parent Advanced Generation Inter‐Cross (MAGIC) indica population comprising 151 accessions. Altered planting density was used as a proxy for elevated atmospheric CO2 response. Low planting density significantly increased panicle weight per plant compared with normal density, and the magnitude of the increase ranged from 1.10 to 2.78 times among accessions for the PRAY population and from 1.05 to 2.45 times for the MAGIC population. Genome‐wide‐association studies validate three E nvironmental R esponsiveness (ER) candidate alleles (qER1–3) that were associated with relative response of panicle weight to low density. Two of these alleles were tested in 13 genotypes to clarify their biomass responses during vegetative growth under elevated CO2 in Japan. Our study provides evidence for polymorphisms that control rice phenotypic plasticity in environments that are rich in resources such as light and CO2.  相似文献   

13.
Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population‐scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population‐scaled recombination rate between Gossypium hirsutum and G. arboreum and sub‐genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome‐wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high‐recombination regions than were those of yield and early maturity traits. These results provide insights into the population‐scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.  相似文献   

14.
15.

Key message

Twenty-seven QTLs were identified for rice seed vigor, in which 16 were novel QTLs. Fifteen elite parental combinations were designed for improving seed vigor in rice.

Abstract

Seed vigor is closely related to direct seeding in rice (Oryza sativa L.). Previous quantitative trait locus (QTL) studies for seed vigor were mainly derived from bi-parental segregating populations and no report from natural populations. In this study, association mapping for seed vigor was performed on a selected sample of 540 rice cultivars (419 from China and 121 from Vietnam). Population structure was estimated on the basis of 262 simple sequence repeat (SSR) markers. Seed vigor was evaluated by root length (RL), shoot length (SL) and shoot dry weight in 2011 and 2012. Abundant phenotypic and genetic diversities were found in the studied population. The population was divided into seven subpopulations, and the levels of linkage disequilibrium (LD) ranged from 10 to 80 cM. We identified 27 marker–trait associations involving 18 SSR markers for three traits. According to phenotypic effects for alleles of the detected QTLs, elite alleles were mined. These elite alleles could be used to design parental combinations and the expected results would be obtained by pyramiding or substituting the elite alleles per QTL (apart from possible epistatic effects). Our results demonstrate that association mapping can complement and enhance previous QTL information for marker-assisted selection and breeding by design.  相似文献   

16.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), usually causes serious rice yield loss in many countries. Rice breeders have used resistance (R) genes to control the disease but many of the resistant cultivars become susceptible few years after releasing. Identification of new R genes to Xoo is one of the main objectives in rice breeding programs. In this study, we used a genomewide association study (GWAS) to analyse the resistance against the Xoo race C1 using the Rice Diversity Panel 1 (RDP1). Disease evaluation of the RDP1 population to C1 indicated that the AUS subgroup conferred a higher level of resistance to C1 than other subgroups. Genomewide association mapping identified 15 QTLs that are distributed on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10 and 12. Some of them are located in the regions without known resistance loci or QTLs. This study demonstrated the effectiveness of GWAS on the genetic dissection of rice resistance to Xoo and provided many Xoo resistance‐associated SNP markers for rice breeding.  相似文献   

17.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

18.
19.
Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton‐producing and cotton‐consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome‐wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high‐density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single‐nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty‐eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high‐resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding.  相似文献   

20.
ABSTRACT

In spite of suspected circadian differences between different ancestral groups, most human studies have used individuals of European descent. This also applies to three recent genome-wide association studies (GWAS), which pinpointed a number of chronotype loci. We investigated the distribution of these hits in different 1000 Genomes populations. We found 6 out of the 41 alleles previously identified by GWAS in European participants (in the genes RGS16, PER2 and AK5 and between the genes APH1A and CA14) to be absent from some non-European population groups. This highlights the need for ancestral diversity in circadian research and may reflect differences affecting the phenotype of individuals of East Asian ancestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号