首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53‐independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.  相似文献   

3.
Chk1, an essential checkpoint kinase in the DNA damage response pathway (DDR), is tightly regulated by both ATR-dependent phosphorylation and proteasome-mediated degradation. Here we identify ubiquitin hydrolase USP7 as a novel regulator of Chk1 protein stability. USP7 was shown before to regulate other DDR proteins such as p53, Hdm2 and Claspin, an adaptor protein in the ATR-Chk1 pathway required for Chk1 activation. Depletion or inhibition of USP7 leads to lower Chk1 levels. The decreased Chk1 protein after USP7 knock down cannot be rescued by simultaneously elevating Claspin levels, demonstrating that the effect of USP7 on Chk1 is independent of its known effect on Claspin. Conversely, overexpression of USP7 wild type, but not a catalytic mutant version, elevates Chk1 levels and increases the half-life of Chk1 protein. Importantly, wild type, but not catalytic mutant USP7 can deubiquitinate Chk1 in vivo and in vitro, confirming that USP7 directly regulates Chk1 protein levels. Finally we show that USP7 catalytic mutant is (mono-)ubiquitinated, which suggests auto-deubiquitination by this ubiquitin hydrolase, possibly important for its regulation.  相似文献   

4.
Using cytostatic factor metaphase II-arrested extracts as a model system, we show that protein phosphatase 1 is regulated during early embryonic cell cycles in Xenopus. Phosphatase 1 activity peaks during interphase and decreases shortly before the onset of mitosis. A second peak of activity appears in mitosis at about the same time that cdc2 becomes active. If extracts are inhibited in S-phase with aphidicolin, then phosphatase 1 activity remains high. The activity of phosphatase 1 appears to determine the timing of exit from S-phase and entry into M-phase; inhibition of phosphatase 1 by the specific inhibitor, inhibitor 2 (Inh-2), causes premature entry into mitosis, whereas exogenously added phosphatase 1 lengthens the interphase period. Analysis of DNA synthesis in extracts treated with Inh-2, but lacking the A- and B-type cyclins, shows that phosphatase 1 is also required for the process of DNA replication. These data indicate that phosphatase 1 is a component of the signaling pathway that ensures that M-phase is not initiated until DNA synthesis is complete.  相似文献   

5.
Insights into electromagnetic interaction mechanisms   总被引:10,自引:0,他引:10  
  相似文献   

6.
By studying the import of radioactively labelled small subunit of ribulose-1,5-bisphosphate carboxylase (pSS) into chloroplasts of the green alga C. reinhardtii cw-15 protein delivery to chloroplasts was found to vary during the cell cycle. Chloroplasts were isolated from highly synchronous cultures at different time points during the cell cycle. When pSS was imported into 'young' chloroplasts isolated early in the light period about three times less pSS was processed to small subunit SS than in 'mature' chloroplasts from the middle of the light period. In 'young' chloroplasts also, less pSS was bound to the envelope surface. During the second half of the light period the import competence of isolated chloroplasts decreased again when based on chlorophyll content or cell volume, but did not change significantly when related to chloroplast number. Measurements of pSS binding to the surface of chloroplasts of different age indicated that the adaptation of protein import competence during the cell cycle is due to a variation of the number of binding sites per chloroplast surface area, rather than to modulation of the binding constant.  相似文献   

7.
8.
Although Sp1 is known to undergo posttranslational modifications such as phosphorylation, glycosylation, acetylation, sumoylation, and ubiquitination, little is known about the possible interplay between the different forms of Sp1 that may affect its overall levels. It is also unknown whether changes in the levels of Sp1 influence any biological cell processes. Here, we identified RNF4 as the ubiquitin E3 ligase of Sp1. From in vitro and in vivo experiments, we found that sumoylated Sp1 can recruit RNF4 as a ubiquitin E3 ligase that subjects sumoylated Sp1 to proteasomal degradation. Sp1 mapping revealed two ubiquitination-related domains: a small ubiquitin-like modifier in the N-terminus of Sp1(Lys16) and the C-terminus of Sp1 that directly interacts with RNF4. Interestingly, when Sp1 was phosphorylated at Thr739 by c-Jun NH2-terminal kinase 1 during mitosis, this phosphorylated form of Sp1 abolished the Sp1-RNF4 interaction. Our results show that, while sumoylated Sp1 subjects to proteasomal degradation, the phosphorylation that occurs during the cell cycle can protect Sp1 from degradation by repressing the Sp1-RNF4 interaction. Thus, we propose that the interplay between posttranslational modifications of Sp1 plays an important role in cell cycle progression and keeps Sp1 at a critical level for mitosis.  相似文献   

9.
The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in β-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.  相似文献   

10.
The phosphorylative modification in vivo of histones after shortterm (0 to 60 min) isoproterenol stimulation of confluent rat C6 glioma cell cultures has been investigated. Analysis of the phosphorylation patterns after the purification and separation of histones by SDS/polyacrylamide gel electrophoresis revealed significantly increased phosphorylation of histones H1-1 and H3 and a decrease of the phosphorylation of histones H1-3, H2A, and H2B. There was no apparent effect of isoproterenol on the net phosphorylation of histones H1-2 and H4. The data suggest an effect of isoproterenol on the phosphorylative modification of glioma cell histones via modulation of nuclear phosphorylating and dephosphorylating activities.  相似文献   

11.
BubR1 (Bub1-related kinase or MAD3/Bub1b) is an essential component of the spindle assembly checkpoint (SAC) and plays an important role in kinetochore localization of other spindle checkpoint proteins in mitosis. But its roles in mammalian oocyte meiosis are unclear. In the present study, we examined the expression, localization and function of BubR1 during mouse oocyte meiotic maturation. The expression level of BubR1 increased progressively from germinal vesicle to metaphase II stages. Immunofluorescent analysis showed that BubR1 localized to kinetochores from the germinal vesicle breakdown to the prometaphase I stages, co-localizing with polo-like kinase 1, while it disappeared from the kinetochores at the metaphase I stage. Spindle disruption by nocodazole treatment caused relocation of BubR1 to kinetochores at metaphase I, anaphase I and metaphase II stages; spindle microtubules were disrupted by low temperature treatment in the BubR1-depleted oocytes in meiosis I, suggesting that BubR1 monitors kinetochore-microtubule (K-MT) attachments. Over-expression of exogenous BubR1 arrested oocyte meiosis maturation at the M I stage or earlier; in contrast, dominant-negative BubR1 and BubR1 depletion accelerated meiotic progression. In the BubR1-depleted oocytes, higher percentage of chromosome misalignment was observed and more oocytes overrode the M I stage arrest induced by low concentration of nocodazole. Our data suggest that BubR1 is a spindle assembly checkpoint protein regulating meiotic progression of oocytes.  相似文献   

12.
13.
The G(1) phase of the cell cycle is an important integrator of internal and external cues, allowing a cell to decide whether to proliferate, differentiate, or die. Multiple protein kinases, among them the cyclin-dependent kinases (Cdks), control G(1)-phase progression and S-phase entry. With the regulation of apoptosis, centrosome duplication, and mitotic chromosome alignment downstream of the HIPPO pathway components MST1 and MST2, mammalian NDR kinases have been implicated to function in cell cycle-dependent processes. Although they are well characterized in terms of biochemical regulation and upstream signaling pathways, signaling mechanisms downstream of mammalian NDR kinases remain largely unknown. We identify here a role for human NDR in regulating the G(1)/S transition. In G(1) phase, NDR kinases are activated by a third MST kinase (MST3). Significantly, interfering with NDR and MST3 kinase expression results in G(1) arrest and subsequent proliferation defects. Furthermore, we describe the first downstream signaling mechanisms by which NDR kinases regulate cell cycle progression. Our findings suggest that NDR kinases control protein stability of the cyclin-Cdk inhibitor protein p21 by direct phosphorylation. These findings establish a novel MST3-NDR-p21 axis as an important regulator of G(1)/S progression of mammalian cells.  相似文献   

14.
15.
Understanding protein stability requires characterization of structural determinants of the folded and unfolded states. Many proteins are capable of populating partially folded states under specific solution conditions. Occasionally, coexistence of the folded and an unfolded state under non- or mildly denaturing conditions can be observed by NMR, allowing us to structurally probe these states under identical conditions. Here we report on a destabilized mutant of the B1 domain of protein G (GB1) whose equilibrium unfolding was systematically investigated. Backbone amide residual dipolar couplings (RDCs), the tryptophan Nepsilon-H resonance and the amide nitrogen transverse relaxation rates (R2s) for varying pH values and different temperatures were measured. The backbone amide RDCs indicate that prior to complete unfolding, two melting hot spots are formed at the turn around T11, L12 and K13 and the N terminus of the helix at A24 and T25. The RDCs for the low pH, thermally unfolded state of GB1 are very small and do not indicate the presence of any native-like structure. Amide nitrogen transverse relaxation rates for GB1 in the folded state at different temperatures exhibit large contributions from exchange processes and the associated dynamics display considerable heterogeneity. Our data provide clear evidence for intermediate conformations and multi-state equilibrium un/folding for this GB1 variant.  相似文献   

16.
The metabolism of HeLa cell plasma membranes during the cell cycle was studied by following the incorporation of radioactive precursor l-[3H]fucose into plasma membranes of synchronized cells. Maximal incorporation of the radioactive precursor was observed in late S phase of the cell cycle. This discrete period of increased incorporation of precursor into the plasma membranes implies the existence of a distinct control mechanism which may relate cell surface phenomena to the cell cycle.  相似文献   

17.
Liu J  Xia H  Kim M  Xu L  Li Y  Zhang L  Cai Y  Norberg HV  Zhang T  Furuya T  Jin M  Zhu Z  Wang H  Yu J  Li Y  Hao Y  Choi A  Ke H  Ma D  Yuan J 《Cell》2011,147(1):223-234
Autophagy is an important intracellular catabolic mechanism that mediates the degradation of cytoplasmic proteins and organelles. We report a potent small molecule inhibitor of autophagy named "spautin-1" for specific and potent autophagy inhibitor-1. Spautin-1 promotes the degradation of Vps34 PI3 kinase complexes by inhibiting two ubiquitin-specific peptidases, USP10 and USP13, that target the Beclin1 subunit of Vps34 complexes. Beclin1 is a tumor suppressor and frequently monoallelically lost in human cancers. Interestingly, Beclin1 also controls the protein stabilities of USP10 and USP13 by regulating their deubiquitinating activities. Since USP10 mediates the deubiquitination of p53, regulating deubiquitination activity of USP10 and USP13 by Beclin1 provides a mechanism for Beclin1 to control the levels of p53. Our study provides a molecular mechanism involving protein deubiquitination that connects two important tumor suppressors, p53 and Beclin1, and a potent small molecule inhibitor of autophagy as a possible lead compound for developing anticancer drugs.  相似文献   

18.
19.
20.
The DNA lesions responsible for the formation of sister chromatid exchanges (SCEs) have been the object of research for a long time. SCEs can be visualized by growing cells for either two rounds of replication in the presence of 5-bromo-2'-deoxyuridine (BrdU) or for one round with BrdU and the next without. If BrdU is added after cells were treated with a DNA-damaging agent, the effect on SCEs can only be analyzed in the second post-treatment mitosis. If one wishes to analyze the first post-treatment mitosis, cells unifilarily labeled with BrdU must be treated. Due to the highly reactive bromine atom, BrdU interacts with such agents like ionizing and UV radiation enhancing the frequency of SCEs. However, its precise role in this process was difficult to assess for a long time, because no alternative technique existed that allowed differential staining of chromatids. We have recently developed a method to differentially label sister chromatids with biotin-16-2'-deoxyuridine-5'-triphosphate (biotin-dUTP) circumventing the disadvantage of BrdU. This technique was applied to study the SCEs induced by ionizing and UV radiation as well as by mitomycin C, DNaseI and AluI. This article is a review of the results and conclusions of our previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号