首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of the genome of the elephant shark (Callorhinchus milii), a member of the cartilaginous fishes (Class Chondrichthyes), reveals that it encodes all three members of the p53 gene family, p53, p63 and p73, each with clear homology to the equivalent gene in bony vertebrates (Class Osteichthyes). Thus, the gene duplication events that lead to the presence of three family members in the vertebrates dates to before the Silurian era. It also encodes Mdm2 and Mdm4 genes but does not encode the p19Arf gene. Detailed comparison of the amino acid sequences of these proteins in the vertebrates reveals that they are evolving at highly distinctive rates, and this variation occurs not only between the three family members but extends to distinct domains in each protein.  相似文献   

2.
3.
Mdm2 and Mdm4 loss regulates distinct p53 activities   总被引:1,自引:0,他引:1  
Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2(-/-) and Mdm4(-/-) embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53(-/-) mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities.  相似文献   

4.
Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4   总被引:7,自引:0,他引:7       下载免费PDF全文
The function of the p53 tumor suppressor to inhibit proliferation or initiate apoptosis is often abrogated in tumor cells. Mdm2 and its homolog, Mdm4, are critical inhibitors of p53 that are often overexpressed in human tumors. In mice, loss of Mdm2 or Mdm4 leads to embryonic lethal phenotypes that are completely rescued by concomitant loss of p53. To examine the role of Mdm2 and Mdm4 in a temporal and tissue-specific manner and to determine the relationships of these inhibitors to each other, we generated conditional alleles. We deleted Mdm2 and Mdm4 in cardiomyocytes, since proliferation and apoptosis are important processes in heart development. Mice lacking Mdm2 in the heart were embryonic lethal and showed defects at the time recombination occurred. A critical number of cardiomyocytes were lost by embryonic day 13.5, resulting in heart failure. This phenotype was completely rescued by deletion of p53. Mice lacking Mdm4 in the heart were born at the correct ratio and appeared to be normal. Our studies provide the first direct evidence that Mdm2 can function in the absence of Mdm4 to regulate p53 activity in a tissue-specific manner. Moreover, Mdm4 cannot compensate for the loss of Mdm2 in heart development.  相似文献   

5.
The p53 pathway is pivotal in tumor suppression. Cellular p53 activity is subject to tight regulation, in which the two related proteins Mdm2 and Mdm4 have major roles. The delicate interplay between the levels of Mdm2, Mdm4 and p53 is crucial for maintaining proper cellular homeostasis. microRNAs (miRNAs) are short non-coding RNAs that downregulate the level and translatability of specific target mRNAs. We report that miR-661, a primate-specific miRNA, can target both Mdm2 and Mdm4 mRNA in a cell type-dependent manner. miR-661 interacts with Mdm2 and Mdm4 RNA within living cells. The inhibitory effect of miR-661 is more prevalent on Mdm2 than on Mdm4. Interestingly, the predicted miR-661 targets in both mRNAs reside mainly within Alu elements, suggesting a primate-specific mechanism for regulatory diversification during evolution. Downregulation of Mdm2 and Mdm4 by miR-661 augments p53 activity and inhibits cell cycle progression in p53-proficient cells. Correspondingly, low miR-661 expression correlates with bad outcome in breast cancers that typically express wild-type p53. In contrast, the miR-661 locus tends to be amplified in tumors harboring p53 mutations, and miR-661 promotes migration of cells derived from such tumors. Thus, miR-661 may either suppress or promote cancer aggressiveness, depending on p53 status.  相似文献   

6.
7.
8.
The product of the Mdm2 oncogene directly interacts with p53 and promotes its ubiquitination and proteasomal degradation. Initial biological studies identified nuclear export sequences (NES), similar to that of the Rev protein from the human immunodeficiency virus, both in Mdm2 and p53. The reported phenotypes resulting from mutation of these NESs, together with results obtained using the nuclear export inhibitor leptomycin B (LMB), have led to a model according to which nuclear export of p53 (via either the NES of Mdm2 or its own NES) is required for efficient p53 degradation. In this study we demonstrate that Mdm2 can promote degradation of p53 in the nucleus or in the cytoplasm, provided both proteins are colocalized. We also investigated if nuclear export is an obligate step on the p53 degradation pathway. We find that (1) when proteasome activity is inhibited, ubiquitinated p53 accumulates in the nucleus and not in the cytoplasm; (2) Mdm2 with a mutated NES can efficiently mediate degradation of wild type p53 or p53 with a mutated NES; (3) the nuclear export inhibitor LMB can increase the steady-state level of p53 by inhibiting Mdm2-mediated ubiquitination of p53; and (4) LMB fails to inhibit Mdm2-mediated degradation of the p53NES mutant, demonstrating that Mdm2-dependent proteolysis of p53 is feasible in the nucleus in the absence of any nuclear export. Therefore, given cocompartmentalization, Mdm2 can promote ubiquitination and proteasomal degradation of p53 with no absolute requirement for nuclear to cytoplasmic transport.  相似文献   

9.
Role of p53 family members in apoptosis   总被引:13,自引:0,他引:13  
  相似文献   

10.
p53 ubiquitination: Mdm2 and beyond   总被引:12,自引:0,他引:12  
Brooks CL  Gu W 《Molecular cell》2006,21(3):307-315
Although early studies have suggested that the oncoprotein Mdm2 is the primary E3 ubiquitin ligase for the p53 tumor suppressor, an increasing amount of data suggests that p53 ubiquitination and degradation are more complex than once thought. The discoveries of MdmX, HAUSP, ARF, COP1, Pirh2, and ARF-BP1 continue to uncover the multiple facets of this pathway. There is no question that Mdm2 plays a pivotal role in downregulating p53 activities in numerous cellular settings. Nevertheless, growing evidence challenges the conventional view that Mdm2 is essential for p53 turnover.  相似文献   

11.
12.
13.
The p53 and Mdm2 families in cancer.   总被引:30,自引:0,他引:30  
Cells within an organism are occasionally exposed to either intracellular or environmental stress. Such stress often has genotoxic potential that enhances the probability of cancer. Two gene families, the p53 family (p53, p63 and p73) and the Mdm2 family (Mdm2 and MdmX), serve as major integrators of the signals generated by genotoxic and oncogenic stress. Their co-ordinated modulation ensures an optimal response to stress and decreases the likelihood of cancer. Work over the past year has provided better understanding of the p53-Mdm2 module that lies in the heart of this regulatory network, and of the intricate interplay between the various members of the network.  相似文献   

14.
The Ink4/Arf locus encodes two tumour-suppressor proteins, p16Ink4a and p19Arf, that govern the antiproliferative functions of the retinoblastoma and p53 proteins, respectively. Here we show that Arf binds to the product of the Mdm2 gene and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by Mdm2 and leading to the activation of p53 in the nucleoplasm. Arf and Mdm2 co-localize in the nucleolus in response to activation of the oncoprotein Myc and as mouse fibroblasts undergo replicative senescence. These topological interactions of Arf and Mdm2 point towards a new mechanism for p53 activation.  相似文献   

15.
16.
ASPP1 and ASPP2: common activators of p53 family members   总被引:21,自引:0,他引:21       下载免费PDF全文
We recently showed that ASPP1 and ASPP2 stimulate the apoptotic function of p53. We show here that ASPP1 and ASPP2 also induce apoptosis independently of p53. By binding to p63 and p73 in vitro and in vivo, ASPP1 and ASPP2 stimulate the transactivation function of p63 and p73 on the promoters of Bax, PIG3, and PUMA but not mdm2 or p21(WAF-1/CIP1). The expression of ASPP1 and ASPP2 also enhances the apoptotic function of p63 and p73 by selectively inducing the expression of endogenous p53 target genes, such as PIG3 and PUMA, but not mdm2 or p21(WAF-1/CIP1). Removal of endogenous p63 or p73 with RNA interference demonstrated that (16) the p53-independent apoptotic function of ASPP1 and ASPP2 is mediated mainly by p63 and p73. Hence, ASPP1 and ASPP2 are the first two identified common activators of all p53 family members. All these results suggest that ASPP1 and ASPP2 could suppress tumor growth even in tumors expressing mutant p53.  相似文献   

17.
Inhibition of p53 degradation by Mdm2 acetylation   总被引:5,自引:0,他引:5  
Wang X  Taplick J  Geva N  Oren M 《FEBS letters》2004,561(1-3):195-201
  相似文献   

18.
Regulation and activation of p53 and its family members   总被引:5,自引:0,他引:5  
Regulation of the p53 tumor suppressor protein occurs to a large extent through control of protein stability, and the MDM2 protein has been shown to play a key role in targeting p53 for degradation. Stress signals that activate the p53 response lead to stabilization of p53 through inhibition of MDM2 mediated degradation, and it is becoming evident that a number of mechanisms exist to abrogate this activity of MDM2. Other members of the p53 protein family may also be regulated through protein stability, although MDM2 is not responsible for the degradation of p73. Nevertheless, interactions of p63 and p73 with MDM2 or p53 have been described, suggesting that each of the p53-related proteins can play some role in regulating the activity of the others  相似文献   

19.
The p53 tumour suppressor has a key role in the control of cell growth and differentiation, and in the maintenance of genome integrity. p53 is kept labile under normal conditions, but in response to stresses, such as DNA damage, it accumulates in the nucleus for induction of cell-cycle arrest, DNA repair or apoptosis. Mdm2 is an ubiquitin ligase that promotes p53 ubiquitination and degradation. Mdm2 is also self-ubiquitinated and degraded. Here, we identified a novel cascade for the increase in p53 level in response to DNA damage. A new SUMO-specific protease, SUSP4, removed SUMO-1 from Mdm2 and this desumoylation led to promotion of Mdm2 self-ubiquitination, resulting in p53 stabilization. Moreover, SUSP4 competed with p53 for binding to Mdm2, also resulting in p53 stabilization. Overexpression of SUSP4 inhibited cell growth, whereas knockdown of susp4 by RNA interference (RNAi) promoted of cell growth. UV damage induced SUSP4 expression, leading to an increase in p53 levels in parallel with a decrease in Mdm2 levels. These findings establish a new mechanism for the elevation of cellular p53 levels in response to UV damage.  相似文献   

20.
The p53 protein and its negative regulator the ubiquitin E3 ligase Mdm2 have been shown to be conserved from the Placazoan to man. In common with D.melanogaster and C.elegans, there is a single copy of the p53 gene in T.adhaerens, while in the vertebrates three p53-like genes can be found: p53 , p63 and p73. The Mdm2 gene is not present within the fully sequenced and highly annotated genomes of C.elegans and D.melanogaster. However, it is present in the Placazoan and the presence of multiple distinct p53 genes in the Sea anemone N.vectensis led us to examine the genomes of other phyla for p53 and Mdm2-like genes. We report here the discovery of an Mdm2-like gene and two distinct p53 like genes in the Arachnid Ioxodes scapularis (Northern Deer Tick). The two predicted Deer Tick p53 proteins are much more highly related to the human p53 protein in sequence than are the fruit fly and nematode proteins. One of the Deer tick genes encodes a p53 protein that is initiated within the DNA binding domain of p53 and shows remarkable homology to the newly described N-terminally truncated delta isoforms of human and zebrafish p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号