共查询到20条相似文献,搜索用时 0 毫秒
1.
Thomas JW Cooley MA Broome JM Salgia R Griffin JD Lombardo CR Schaller MD 《The Journal of biological chemistry》1999,274(51):36684-36692
Focal adhesion kinase (FAK) and paxillin are focal adhesion-associated, phosphotyrosine-containing proteins that physically interact. A previous study has demonstrated that paxillin contains two binding sites for FAK. We have further characterized these two binding sites and have demonstrated that the binding affinity of the carboxyl-terminal domain of FAK is the same for each of the two binding sites. The presence of both binding sites increases the affinity for FAK by 5-10-fold. A conserved paxillin sequence called the LD motif has been implicated in FAK binding. We show that mutations in the LD motifs in both FAK-binding sites are required to dramatically impair FAK binding in vitro. A paxillin mutant containing point mutations in both FAK-binding sites was characterized. The mutant exhibited reduced levels of phosphotyrosine relative to wild type paxillin in subconfluent cells growing in culture, following cell adhesion to fibronectin and in src-transformed fibroblasts. These results suggest that paxillin must bind FAK for maximal phosphorylation in response to cell adhesion and that FAK may function to direct tyrosine phosphorylation of paxillin in the process of transformation by the src oncogene. 相似文献
2.
Receptor for Activated C Kinase, RACK1, is an adaptor protein that regulates signaling via Src and PKC-dependent pathways, and has been implicated in cell migration. In this study we demonstrate novel functions for RACK1 in regulating adhesion dynamics during cell migration. We report that cells lacking RACK1 are less motile and show reduced dynamics of paxillin and talin at focal complexes. To investigate the role of the RACK1/Src interactions in adhesion dynamics, we used RACK1 in which the putative Src binding site has been mutated (RACK Y246F). RACK1-deficient cells showed enhanced c-Src activity that was rescued by expression of wild type RACK1, but not by RACK Y246F. Expression of wild type RACK1, but not RACK Y246F, was also able to rescue the adhesion and migration defects observed in the RACK1-deficient cells. Furthermore, our findings indicate that RACK1 functions to regulate paxillin phosphorylation and that its effects on paxillin dynamics require the Src-mediated phosphorylation of tyrosine 31/118 on paxillin. Taken together, these findings support a novel role for RACK1 as a key regulator of cell migration and adhesion dynamics through the regulation of Src activity, and the modulation of paxillin phosphorylation at early adhesions. 相似文献
3.
The adaptor protein paxillin plays an important role in cell migration. Although the c-Jun amino-terminal kinase (JNK) phosphorylation of paxillin on Ser 178 has been found to be critical for cell migration, the precise mechanism by which JNK regulates cell migration is still not very clear. Here, the migration of human corneal epithelial (HCE) cells was used to determine which signaling pathways are involved in EGF-induced paxillin phosphorylation. Paxillin was phosphorylated on Tyr 31 and Tyr 118 after induction of migration by EGF in HCE cells. Specific inhibition of JNK activation by inhibitor SP600125 or overexpression of a dominant-negative JNK mutant not only blocked EGF-induced cell migration, but also eliminated tyrosine phosphorylation of paxillin on Tyr 31 and Tyr 118. HCE cells overexpressing paxillin-S178A mutant also exhibited lower mobility, and reduced phosphorylation of Tyr 31 and Tyr 118. However, paxillin-S178A-inhibited cell migration can be rescued by overexpression of paxillin-Y31E/Y118E mutant. Importantly, inhibition of JNK by SP600125 or overexpression of paxillin-S178A mutant prevented the association of FAK with paxillin. Taken together, these results suggest that phosphorylation of paxillin on Ser 178 by JNK is required for the association of paxillin with FAK, and subsequent tyrosine phosphorylation of paxillin. 相似文献
4.
Signal regulatory protein alpha (SIRPalpha, SHPS-1) is a plasma membrane receptor for CD47 and a key regulator of phagocytosis, growth factor signaling, and migration. Phosphorylation of immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail is essential for the functional effects of SIRPalpha, at least in part, because the phosphorylated immunoreceptor tyrosine-based inhibition motifs recruit Src homology 2 domain-containing tyrosine phosphatases. Ligation by CD47 and integrin engagement both have been thought to regulate SIRPalpha phosphorylation. However, their distinct contributions have not been distinguished. Here, we show that the importance of CD47 varies with cell type, since ligation of CD47 is not necessary for SIRPalpha phosphorylation in myeloid cells, whereas it is required in endothelial cells. In contrast, integrin-mediated adhesion is required for SIRPalpha phosphorylation in both cell types. This shows that SIRPalpha phosphorylation is dually regulated and demonstrates a new mechanism for functional cooperation between integrins and the integrin-associated protein CD47. 相似文献
5.
Vindis C Teli T Cerretti DP Turner CE Huynh-Do U 《The Journal of biological chemistry》2004,279(27):27965-27970
Interactions between Eph receptors and their membrane-bound ligands (ephrins) are of critical importance for key developmental processes such as boundary formation or vascular development. Their downstream signaling pathways are intricate and heterogeneous at several levels, the combined effect being a highly complex and flexible system. Here we demonstrate that activated EphB1 induces tyrosine phosphorylation of the focal adhesion protein paxillin at Tyr-31 and Tyr-118 and is recruited to paxillin-focal adhesion kinase (FAK) complexes. Pretreatment with the specific Src inhibitor PP2, or expression of dominant-negative, kinase-dead c-Src abrogates EphB1-induced tyrosine phosphorylation of paxillin. Cells transfected with the paxillin mutant Y31F/Y118F displayed a reduced migration in response to ephrin B2 stimulation. Furthermore, expression of an LD4 deletion mutant (paxillin DeltaLD4) significantly reduces EphB1-paxillin association, paxillin tyrosine phosphorylation, as well as EphB1-dependent cell migration. Finally, mutation of the Nck-binding site of EphB1 (Y594F) interrupts the interaction between Nck, paxillin, and EphB1. These data suggest a model in which ligand-activated EphB1 forms a signaling complex with Nck, paxillin, and focal adhesion kinase and induces tyrosine phosphorylation of paxillin in a c-Src-dependent manner to promote cell migration. 相似文献
6.
Differential regulation of beta1 integrins by chemoattractants regulates neutrophil migration through fibrin
下载免费PDF全文

Loike JD Cao L Budhu S Marcantonio EE El Khoury J Hoffman S Yednock TA Silverstein SC 《The Journal of cell biology》1999,144(5):1047-1056
Chemoattractants differ in their capacity to stimulate neutrophils to adhere to and to migrate through matrices containing fibrin. Formyl methionyl leucyl phenylalanine (fMLP) stimulates neutrophils to adhere closely to, but not to migrate into, fibrin gels. Leukotriene B4 (LTB4) stimulates neutrophils to adhere loosely to and to migrate through fibrin gels. We report that alpha5beta1 integrins regulate the different migratory behaviors on fibrin gels of neutrophils in response to these chemoattractants. fMLP, but not LTB4, activated neutrophil beta1 integrins, as measured by binding of mAb 15/7 to an activation epitope on the beta1 integrins. Antibodies or peptides that block alpha5beta1 integrins prevented fMLP-stimulated neutrophils from forming zones of close apposition on fibrin and reversed fMLP's inhibitory effect on neutrophil chemotaxis through fibrin. In contrast, neither peptides nor antibodies that block beta1 integrins affected the capacity of LTB4-stimulated neutrophils to form zones of loose apposition or to migrate through fibrin gels. These results suggest that chemoattractants generate at least two different messages that direct neutrophils, and perhaps other leukocytes, to accumulate at specific anatomic sites: a general message that induces neutrophils to crawl and a specific message that prepares neutrophils to stop when they contact appropriate matrix proteins for activated beta1 integrins. 相似文献
7.
We have examined the expression and function of the cell adhesion molecules LFA-1 (CD11a/CD18), ICAM-1 (CD54), and ICAM-2 in murine fetal thymic ontogeny and in the adult thymus. On fetal days 14 and 15, 40 to 50% of thymocytes coexpress high levels of LFA-1 and ICAM-1, as determined by flow cytometry. By day 16, more than 90% of fetal thymocytes are LFA-1+ ICAM-1hi, and all IL-2R+ cells are located in this population. Although LFA-1 expression remains unchanged thereafter, ICAM-1 expression appears to be differentially regulated in different thymocyte subpopulations, with CD4+8+ cells being ICAM-1lo and CD4-8- thymocytes remaining ICAM-1hi. ICAM-2 surface expression is dull on both fetal and adult thymocytes. Surprisingly, the expression of ICAM-1 is differentially up-regulated on T cells having a mature phenotype in thymus and in peripheral lymphoid organs, with CD8+ T cells bearing the highest amount of surface ICAM-1. Addition of anti-ICAM-1 or anti-LFA-1 antibodies to fetal thymic organ cultures results in the impaired generation of CD4+8+ cells. These results indicate that LFA-1/ICAM-1 interactions facilitate murine thymic development and suggest that cell adhesion molecules mediate important events in T cell differentiation. 相似文献
8.
9.
Madhulika B. Gupta 《Journal of cell communication and signaling》2015,9(2):111-123
Fetal growth restriction (FGR) increases the risk of perinatal complications and predisposes the infant to developing metabolic, cardiovascular, and neurological diseases in childhood and adulthood. The pathophysiology underlying FGR remains poorly understood and there is no specific treatment available. Biomarkers for early detection are also lacking. The insulin-like growth factor (IGF) system is an important regulator of fetal growth. IGF-I is the primary regulator of fetal growth, and fetal circulating levels of IGF-I are decreased in FGR. IGF-I activity is influenced by a family of IGF binding proteins (IGFBPs), which bind to IGF-I and decrease its bioavailability. During fetal development the predominant IGF-I binding protein in fetal circulation is IGFBP-1, which is primarily secreted by the fetal liver. IGFBP-1 binds IGF-I and thereby inhibits its bioactivity. Fetal circulating levels of IGF-I are decreased and concentrations of IGFBP-1 are increased in FGR. Phosphorylation of human IGFBP-1 at specific sites markedly increases its binding affinity for IGF-I, further limiting IGF-I bioactivity. Recent experimental evidence suggests that IGFBP-1 phosphorylation is markedly increased in the circulation of FGR fetuses suggesting an important role of IGFBP-1 phosphorylation in the regulation of fetal growth. Understanding of the significance of site-specific IGFBP-1 phosphorylation and how it is regulated to contribute to fetal growth will be an important step in designing strategies for preventing, managing, and/or treating FGR. Furthermore, IGFBP-1 hyperphosphorylation at unique sites may serve as a valuable biomarker for FGR. 相似文献
10.
A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair 总被引:9,自引:0,他引:9
Grose R Hutter C Bloch W Thorey I Watt FM Fässler R Brakebusch C Werner S 《Development (Cambridge, England)》2002,129(9):2303-2315
Integrins are ubiquitous transmembrane receptors that play crucial roles in cell-cell and cell-matrix interactions. In this study, we have determined the effects of the loss of beta 1 integrins in keratinocytes in vitro and during cutaneous wound repair. Flow cytometry of cultured beta 1-deficient keratinocytes confirmed the absence of beta 1 integrins and showed downregulation of alpha 6 beta 4 but not of alpha v integrins. beta 1-null keratinocytes were characterised by poor adhesion to various substrates, by a reduced proliferation rate and by a strongly impaired migratory capacity. In vivo, the loss of beta 1 integrins in keratinocytes caused a severe defect in wound healing. beta 1-null keratinocytes showed impaired migration and were more densely packed in the hyperproliferative epithelium. Surprisingly, their proliferation rate was not reduced in early wounds and even increased in late wounds. The failure in re-epithelialisation resulted in a prolonged inflammatory response, leading to dramatic alterations in the expression of important wound-regulated genes. Ultimately, beta 1-deficient epidermis did cover the wound bed, but the epithelial architecture was abnormal. These findings demonstrate a crucial role of beta 1 integrins in keratinocyte migration and wound re-epithelialisation. Movies available on-line 相似文献
11.
12.
T B Issekutz 《Journal of immunology (Baltimore, Md. : 1950)》1992,149(10):3394-3402
Lymphocyte function-associated Ag-1 (LFA-1) or CD11a/CD18 mediates lymphocyte adhesion to cultured vascular endothelial cells (EC). Thus, LFA-1 likely plays a major role in lymphocyte migration out of the blood, but there is little information on this in vivo. Small peritoneal exudate lymphocytes (sPEL) and lymph node (LN) lymphoblasts adhere to cytokine-activated EC and preferentially migrate to cutaneous inflammatory sites. The role of LFA-1 in the adherence and in vivo migration of these T cells was determined. Because of a lack of anti-rat LFA-1, mAb were prepared to rat T cells. One mAb, TA-3, inhibited homotypic aggregation; T cell proliferation to Ag, alloantigens, and mitogens; stained all leukocytes; and immunoprecipitated 170- and 95-kDa polypeptides from lymphocytes and neutrophils. TA-3 binding to lymphocytes also required Ca2+, but not Mg2+. Thus, TA-3 appears to react with rat LFA-1. TA-3 inhibited spleen T cell adhesion to unstimulated EC by 30% and to IFN-gamma, TNF-alpha, IL-1 alpha, and LPS stimulated EC by 50 to 60% but inhibited sPEL EC adhesion by only 10%. TA-3 also strongly inhibited anti-CD3-stimulated LN T cell adherence. The migration of spleen T cells to delayed-type hypersensitivity and skin sites injected with LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF was inhibited by 72 to 88% by TA-3, and was decreased by 50% to peripheral LN. TA-3 caused less but still 50 to 60% inhibition of sPEL migration to inflamed skin. Lymphoblast migration to skin was inhibited 40 to 80% and to PLN by 30%. Migration of lymphocytes from all sources to mesenteric LN was inhibited by 32 to 60%. In conclusion, LFA-1 mediates much of the adherence of spleen T cells and lymphoblasts to EC in vitro, most of the migration of these cells to dermal inflammation and about 50% of the homing of LN and spleen T cells to peripheral and mesenteric LN. sPEL are less dependent on LFA-1 for adhesion to EC in vitro and for migration to inflamed skin and LN in vivo. 相似文献
13.
Ohnishi H Kobayashi H Okazawa H Ohe Y Tomizawa K Sato R Matozaki T 《The Journal of biological chemistry》2004,279(27):27878-27887
SHPS-1 is a transmembrane protein whose cytoplasmic region undergoes tyrosine phosphorylation and then binds the protein-tyrosine phosphatase SHP-2. Formation of the SHPS-1-SHP-2 complex is implicated in regulation of cell migration. In addition, SHPS-1 and its ligand CD47 constitute an intercellular recognition system that contributes to inhibition of cell migration by cell-cell contact. The ectodomain of SHPS-1 has now been shown to be shed from cells in a reaction likely mediated by a metalloproteinase. This process was promoted by activation of protein kinase C or of Ras, and the released ectodomain exhibited minimal CD47-binding activity. Metalloproteinases catalyzed the cleavage of a recombinant SHPS-1-Fc fusion protein in vitro, and the primary cleavage site was localized to the juxtamembrane region of SHPS-1. Forced expression of an SHPS-1 mutant resistant to ectodomain shedding impaired cell migration, cell spreading, and reorganization of the actin cytoskeleton. It also increased the tyrosine phosphorylation of paxillin and FAK triggered by cell adhesion. These results suggest that shedding of the ectodomain of SHPS-1 plays an important role in regulation of cell migration and spreading by this protein. 相似文献
14.
Autophagy is a conserved cellular process of macromolecule recycling that involves vesicle-mediated degradation of cytoplasmic components. Autophagy plays essential roles in normal cell homeostasis and development, the response to stresses such as nutrient starvation, and contributes to disease processes including cancer and neurodegeneration. Although many of the autophagy components identified from genetic screens in yeast are well conserved in higher organisms, the mechanisms by which this process is regulated in any species are just beginning to be elucidated. In a genetic screen in Drosophila melanogaster, we have identified a link between the focal adhesion protein paxillin and the Atg1 kinase, which has been previously implicated in autophagy. In mammalian cells, we find that paxillin is redistributed from focal adhesions during nutrient deprivation, and paxillin-deficient cells exhibit defects in autophagosome formation. Together, these findings reveal a novel evolutionarily conserved role for paxillin in autophagy. 相似文献
15.
Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells 总被引:2,自引:0,他引:2
Montiel M de la Blanca EP Jiménez E 《Biochemical and biophysical research communications》2005,327(4):971-978
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation. 相似文献
16.
Woods AJ Kantidakis T Sabe H Critchley DR Norman JC 《Molecular and cellular biology》2005,25(9):3763-3773
We have previously identified poly(A)-binding protein 1 (PABP1) as a ligand for paxillin and shown that the paxillin-PABP1 complex undergoes nucleocytoplasmic shuttling. By targeting the paxillin-binding subdomain sequences in PABP1, we have generated mutants of PABP1 that do not bind to cellular paxillin. Here we report that paxillin association is necessary for efficient nuclear export of PABP1 and that RNA interference of paxillin drives the nuclear accumulation of PABP1. Furthermore, ablation of paxillin-PABP1 association impeded a number of indices of cell motility including spreading on fibronectin, cell migration on two-dimensional matrices, and transmigration in Boyden chambers. These data indicate that PABP1 must associate with paxillin in order to be efficiently transported from the nucleus to the cytoplasm and that this event is necessary for cells to remodel their focal adhesions during cell migration. 相似文献
17.
18.
Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin 总被引:4,自引:1,他引:4
下载免费PDF全文

Chen HY Shen CH Tsai YT Lin FC Huang YP Chen RH 《Molecular and cellular biology》2004,24(24):10558-10572
Brk (for breast tumor kinase) is a nonreceptor tyrosine kinase containing SH3, SH2, and tyrosine kinase catalytic domains. Brk was originally identified from a human metastatic breast tumor, and its overexpression is frequently observed in breast cancer and several other cancer types. However, the molecular mechanism by which this kinase participates in tumorigenesis remains poorly characterized. In the present study, we not only identified paxillin as the binding partner and substrate of Brk but also discovered a novel signaling pathway by which Brk mediates epidermal growth factor (EGF)-induced paxillin phosphorylation. We show that EGF stimulation activates the catalytic activity of Brk, which in turn phosphorylates paxillin at Y31 and Y118. These phosphorylation events promote the activation of small GTPase Rac1 via the function of CrkII. Through this pathway, Brk is capable of promoting cell motility and invasion and functions as a mediator of EGF-induced migration and invasion. In accordance with these functional roles, Brk translocates to membrane ruffles, where it colocalizes with paxillin during cell migration. Together, our findings identify novel signaling and biological roles of Brk and indicate the first potential link between Brk and metastatic malignancy. 相似文献
19.
In addition to mediating cell adhesion, fibronectin (FN) also affects the migration of different cell types. However, the role of FN in lymphocyte migration is unclear. In this study, we examined the effects of FN on the in vitro migration of lymphocytes. Using the checkerboard analysis in a blind-well microchemotaxis assay, soluble FN was determined to have neither a chemotactic nor chemokinetic effect on spleen or thymus lymphocytes. However, when the nitrocellulose filter was coated unidirectionally with FN, the migration of both spleen and thymus lymphocytes into the filter was enhanced, indicating that FN is haptotactic for lymphocytes. When the filter was coated bidirectionally, no enhancement in migration was observed, indicating that FN is not haptokinetic for lymphocytes. When the FN cell-binding domain and the heparin-binding domain were tested, the cell-binding domain was haptotactic for both spleen and thymus lymphocytes, whereas the heparin-binding domain was only haptotactic for spleen lymphocytes. Because the heparin-binding domain can mediate strong adhesion of thymus lymphocytes, the lack of haptotactic activity is likely to be the result of excessive binding that prevents cell motility. 相似文献
20.