首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.  相似文献   

2.
Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.  相似文献   

3.
4.
Peripheral autonomic neurones release nitric oxide (NO) upon nerve activation. However, the regulation of neuronal NO formation is poorly understood. We used the cyclic guanosine 3',5'-monophosphate (cGMP) analogue 8-Br-cGMP, the soluble guanylyl cyclase (sGC) stimulator YC-1, the phosphodiesterase inhibitor zaprinast and the sGC inhibitor ODQ to study whether the sGC/cGMP pathway is involved in regulation of neuronal NO release in nerve plexus-containing smooth muscle preparations from guinea pig colon. Electrical stimulation of the preparation evoked release of NO/NO(-)(2). In the presence of 8-Br-cGMP, YC-1 and zaprinast (all at 10(-4) M) the NO/NO(-)(2)-release increased to 152 +/- 16% (P < 0.05), 164 +/- 37% (P < 0.05) and 290 +/- 67% (P < 0.05) of controls, respectively. Conversely, ODQ (10(-5) M) decreased the evoked release of NO/NO(-)(2) to 49 +/- 7% (P < 0.05) of controls. Our data suggest that the sGC/cGMP pathway modulates NO release. Thus it is likely that NO exerts a positive feedback on its own release from peripheral autonomic neurones.  相似文献   

5.
Large (pathological) amounts of nitric oxide (NO) induce cell injury, whereas low (physiological) NO concentrations often ameliorate cell injury. We tested the hypotheses that pretreatment of endothelial cells with low concentrations of NO (preconditioning) would prevent injury induced by high NO concentrations. Apoptosis, induced in bovine aortic endothelial cells (BAECs) by exposing them to either 4 mM sodium nitroprusside (SNP) or 0.5 mM N-(2-aminoethyl)-N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine (spermine NONOate) for 8 h, was abolished by 24-h pretreatment with either 100 microM SNP, 10 microM spermine NONOate, or 100 microM 8-bromo-cGMP (8-Br-cGMP). Repair of BAECs following wounding, measured as the recovery rate of transendothelial electrical resistance, was delayed by 8-h exposure to 4 mM SNP, and this delay was significantly attenuated by 24-h pretreatment with 100 microM SNP. NO preconditioning produced increased association and expression of soluble guanyl cyclase (sGC) and heat shock protein 90 (HSP90). The protective effect of NO preconditioning, but not the injurious effect of 4 mM SNP, was abolished by either a sGC activity inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or a HSP90 binding inhibitor (radicicol) and was mimicked by 8-Br-cGMP. We conclude that preconditioning with a low dose of NO donor accelerates repair and maintains endothelial integrity via a mechanism that includes the HSP90/sGC pathway. HSP90/sGC may thus play a role in the protective effects of NO-generating drugs from injurious stimuli.  相似文献   

6.
Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway.  相似文献   

7.
The use of exogenous nitric oxide (NO) has been shown to alter the regulation of other endothelially derived mediators of vascular tone, such as endothelin-1 (ET-1). However, the interaction between NO and ET-1 appears to be complex and remains incompletely understood. One of the major actions of NO is the activation of soluble guanylate cyclase (sGC) with the subsequent generation of cGMP. Therefore, we undertook this study to test the hypothesis that NO regulates ET-1 production via the activation of the sGC/cGMP pathway. The results obtained indicated that the exposure of primary cultures of 4-wk-old ovine pulmonary arterial endothelial cells (4-wk PAECs) to the long-acting NO donor DETA NONOate induced both a dose- and time-dependent decrease in secreted ET-1. This decrease in ET-1 secretion occurred in the absence of changes in endothelin-converting enzyme-1 or sGC expression but in conjunction with a decrease in prepro-ET-1 mRNA. The changes in ET-1 release were inversely proportional to the cellular cGMP content. Furthermore, the NO-independent activator of sGC, YC-1, or treatment with a cGMP analog also produced significant decreases in ET-1 secretion. Conversely, pretreatment with the sGC inhibitor ODQ blocked the NO-induced decrease in ET-1. Therefore, we conclude that exposure of 4-wk PAECs to exogenous NO decreases secreted ET-1 resulting from the activation of sGC and increased cGMP generation.  相似文献   

8.
The nitric oxide (NO)/cGMP pathway plays a key role in the regulation of pulmonary vascular tone during the transition from the fetal to the neonatal circulation, and it is impaired in pathophysiological conditions such as pulmonary hypertension. In the present study, we have analyzed the changes in the function and expression of soluble guanylyl cyclase (sGC) in pulmonary arteries during early postnatal maturation in isolated third-branch pulmonary arteries from newborn (3-18 h of age) and 2-wk-old piglets. The expression of sGC beta(1)-subunit in pulmonary arteries increased with postnatal age both at the level of mRNA and protein. The catalytic region of porcine sGC beta(1) was sequenced, showing a 92% homology with the human sequence. This age-dependent increase in sGC expression correlated with increased vasorelaxant responses to the physiological sGC activator NO and to the exogenous sGC activator YC-1, but not to the membrane-permeable cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate. In conclusion, an increased expression of sGC in pulmonary conduit arteries from 2-wk-old compared with newborn piglets explains, at least partly, the age-dependent increase in the vasorelaxant response of NO and other activators of sGC.  相似文献   

9.
Platelet-derived growth factor (PDGF), apotent serum mitogen for vascular smooth muscle cells (VSMCs), plays animportant role in membrane transport regulation and in atherosclerosis. K-Cl cotransport (K-Cl COT/KCC), the coupled-movement of K and Cl, isinvolved in ion homeostasis. VSMCs possess K-Cl COT activity and theKCC1 and KCC3 isoforms. Here, we report on the effect of PDGF on K-ClCOT activity and mRNA expression in primary cultures of rat VSMCs. K-ClCOT was determined as the Cl-dependent Rb influx and mRNA expression bysemiquantitative RT-PCR. Twenty four-hour serum deprivation inhibitedbasal K-Cl COT activity. Addition of PDGF increased total proteincontent and K-Cl COT activity in a time-dependent manner. PDGFactivated K-Cl COT in a dose-dependent manner, both acutely (10 min)and chronically (12 h). AG-1296, a selective inhibitor of the PDGFreceptor tyrosine kinase, abolished these effects. Actinomycin D andcycloheximide had no effect on the acute PDGF activation of K-Cl COT,suggesting posttranslational regulation by the drug. Furthermore, PDGFincreased KCC1 and decreased KCC3 mRNA expression in a time-dependentmanner. These results indicate that chronic activation of K-Cl COTactivity by PDGF may involve regulation of the two KCC mRNA isoforms,with KCC1 playing a dominant role in the mechanism of PDGF-mediated activation.

  相似文献   

10.
Abstract: Heme oxygenase is an essential enzyme in the heme catabolism that produces carbon monoxide (CO). This study was designed to examine the expression of two heme oxygenase isozyme mRNAs in the human brain and to explore the involvement of nitric oxide (NO) and various neuropeptides in the regulation of their expression. Northern blot analysis showed the expression of heme oxygenase-1 and heme oxygenase-2 mRNAs in every region of the brain examined, with the highest levels found in the frontal cortex, temporal cortex, occipital cortex, and hypothalamus. In a human glioblastoma cell line, T98G, treatment with any of three types of NO donors—sodium nitroprusside, 3-morpholinosydnonimine, and S -nitroso- l -glutathione—caused a significant increase in the levels of heme oxygenase-1 mRNA but not in the levels of heme oxygenase-2 and heat-shock protein 70 mRNAs. Sodium nitroprusside increased the levels of heme oxygenase-1 protein but not the levels of heat-shock protein 70 in T98G cells. The increase in content of heme oxygenase-1 mRNA caused by sodium nitroprusside was completely abolished by the treatment with actinomycin D. On the other hand, the levels of heme oxygenase isozyme mRNAs were not noticeably changed in T98G cells following the treatment with 8-bromo cyclic GMP, sodium nitrite, or various neuropeptides, such as calcitonin gene-related peptide, endothelin-1, and corticotropin-releasing hormone. The present study has shown the expression profiles of heme oxygenase-1 and -2 mRNAs in the human brain and the induction of heme oxygenase-1 mRNA caused by NO donors in T98G cells. These findings raise a possibility that the CO/heme oxygenase system may function in concert with the NO/NO synthase system in the brain.  相似文献   

11.
12.
13.
We investigated the molecular mechanism of cyclic GMP-induced down-regulation of soluble guanylyl cyclase expression in rat aorta. 3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), an allosteric activator of this enzyme, decreased the expression of soluble guanylyl cyclase alpha(1) subunit mRNA and protein. This effect was blocked by the enzyme inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b-1,4)oxazin-1-one (NS2028) and by actinomycin D. Guanylyl cyclase alpha(1) mRNA-degrading activity was increased in protein extracts from YC-1-exposed aorta and was attenuated by pretreatment with actinomycin D and NS2028. Gelshift and supershift analyses using an adenylate-uridylate-rich ribonucleotide from the 3'-untranslated region of the alpha(1) mRNA and a monoclonal antibody directed against the mRNA-stabilizing protein HuR revealed HuR mRNA binding activity in aortic extracts, which was absent in extracts from YC-1-stimulated aortas. YC-1 decreased the expression of HuR, and this decrease was prevented by NS2028. Similarly, down-regulation of HuR by RNA interference in cultured rat aortic smooth muscle cells decreased alpha(1) mRNA and protein expression. We conclude that HuR protects the guanylyl cyclase alpha(1) mRNA by binding to the 3'-untranslated region. Activation of guanylyl cyclase decreases HuR expression, inducing a rapid degradation of guanylyl cyclase alpha(1) mRNA and lowering alpha(1) subunit expression as a negative feedback response.  相似文献   

14.
We utilized rat fetal lung fibroblasts (RFL-6) to evaluate our PDE5 inhibitors at cellular level and observed a decrease in cGMP accumulation induced by sodium nitroprusside (SNP) and PDE5 inhibitors with passage. To further investigate this observation, we examined cGMP synthesis via soluble guanylyl cyclase (sGC) and degradation via phosphodiesterases (PDEs) at different passages. At passage (p)4, p9, p14, major cGMP and cAMP degradation activities were contributed by PDE5 and PDE4, respectively. The PDE5 activity decreased 50% from p4 to p14, while PDE4 activity doubled. The cGMP accumulation was evaluated in the presence of sodium nitroprusside (SNP) and/or PDE inhibitors in p4 and p14 cells. SNP together with sildenafil, a PDE5 inhibitor, induced dose-dependent increase in cGMP levels in cells at p4, but showed little effect on cells at p14. The possible down regulation of sGC at mRNA level was explored using real-time RT-PCR. The result showed the mRNA level of the alpha1 subunit of sGC decreased about 98% by p9, while the change on beta1 mRNA was minimal. Consistently, sGC activities in cell lysate decreased by 94% at p9. Forskolin stimulated a dramatic increase in cAMP levels in cells at all passages examined. Our results show that sGC activity decreased significantly and rapidly with passage due to a down regulation of the alpha1 subunit mRNA, yet the adenylyl cyclase activity was not compromised. This study further emphasized the importance of considering passage number when using cell culture as a model system to study NO/cGMP pathway.  相似文献   

15.
Nitric oxide (NO), in addition to its vasodilator action, has also been shown to antagonize the mitogenic and hypertrophic responses of growth factors and vasoactive peptides such as endothelin-1 (ET-1) in vascular smooth muscle cells (VSMCs). However, the mechanism by which NO exerts its antimitogenic and antihypertrophic effect remains unknown. Therefore, the aim of this study was to determine whether NO generation would modify ET-1-induced signaling pathways involved in cellular growth, proliferation, and hypertrophy in A-10 VSMCs. Treatment of A-10 VSMCs with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP), two NO donors, attenuated the ET-1-enhanced phosphorylation of several key components of growth-promoting and hypertrophic signaling pathways such as ERK1/2, PKB, and Pyk2. On the other hand, inhibition of the endogenous NO generation with N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, increased the ET-1-induced phosphorylation of these signaling components. Since NO mediates its effect principally through a cGMP-soluble guanylyl cyclase (sGC) pathway, we investigated the role of these molecules in NO action. 8-Bromoguanosine 3',5'-cyclic monophosphate, a nonmetabolizable and cell-permeant analog of cGMP, exhibited a effect similar to that of SNAP and SNP. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of sGC, reversed the inhibitory effect of NO on ET-1-induced responses. SNAP treatment also decreased the protein synthesis induced by ET-1. Together, these data demonstrate that NO, in a cGMP-dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB, and Pyk2 and also antagonized the hypertrophic effects of ET-1. It may be suggested that NO-induced generation of cGMP contributes to the inhibition of ET-1-induced mitogenic and hypertrophic responses in VSMCs.  相似文献   

16.
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator. In the presence of NO, YC-1 synergistically increases the catalytic activity of sGC by enhancing the affinity of NO for the heme. The site of interaction of YC-1 with sGC is unknown. We conducted a mutational analysis to identify the binding site and to determine what residues were involved in the propagation of NO and/or YC-1 activation. Because guanylyl cyclases (GCs) and adenylyl cyclases (ACs) are homologous, we used the three-dimensional structure of AC to guide the mutagenesis. Biochemical analysis of purified mutants revealed that YC-1 increases the catalytic activity not only by increasing the NO affinity but also by increasing the efficacy of NO. Effects of YC-1 on NO affinity and efficacy were dissociated by single-point mutations implying that YC-1 has, at least, two types of interaction with sGC. A structural model predicts that YC-1 may adopt two configurations in one site that is pseudosymmetric with the GTP binding site and equivalent to the forskolin site in AC.  相似文献   

17.
Phosphodiesterases (PDE) metabolize cyclic nucleotides limiting the effects of vasodilators such as prostacyclin and nitric oxide (NO). In this study, DNA microarray techniques were used to assess the impact of NO on expression of PDE genes in rat pulmonary arterial smooth muscle cells (rPASMC). Incubation of rPASMC with S-nitroso-l-glutathione (GSNO) increased expression of a PDE isoform that specifically metabolizes cAMP (PDE4B) in a dose- and time-dependent manner. GSNO increased PDE4B protein levels, and rolipram-inhibitable PDE activity was 2.3 +/- 1.0-fold greater in GSNO-treated rPASMC than in untreated cells. The soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one, and the cAMP-dependent protein kinase inhibitor, H89, prevented induction of PDE4B gene expression by GSNO, but the protein kinase G (PKG) inhibitors, Rp-8-pCPT-cGMPs and KT-5823, did not. Incubation of rPASMC with IL-1beta and tumor necrosis factor-alpha induced PDE4B gene expression, an effect that was inhibited by l-N(6)-(1-iminoethyl)lysine, an antagonist of NO synthase 2 (NOS2). The GSNO-induced increase in PDE4B mRNA levels was blocked by actinomycin D but augmented by cycloheximide. Infection of rPASMC with an adenovirus specifying a dominant negative cAMP response element binding protein (CREB) mutant inhibited the GSNO-induced increase of PDE4B gene expression. These results suggest that exposure of rPASMC to NO induces expression of PDE4B via a mechanism that requires cGMP synthesis by sGC but not PKG. The GSNO-induced increase of PDE4B gene expression is CREB dependent. These findings demonstrate that NO increases expression of a cAMP-specific PDE and provide evidence for a novel "cross talk" mechanism between cGMP and cAMP signaling pathways.  相似文献   

18.
Potassium channels activated by membrane stretch may contribute to maintenance of relaxation of smooth muscle cells in visceral hollow organs. Previous work has identified K(+) channels in murine colon that are activated by stretch and further regulated by NO-dependent mechanisms. We have screened murine gastrointestinal, vascular, bladder, and uterine smooth muscles for the expression of TREK and TRAAK mRNA. Although TREK-1 was expressed in many of these smooth muscles, TREK-2 was expressed only in murine antrum and pulmonary artery. TRAAK was not expressed in any smooth muscle cells tested. Whole cell currents from TREK-1 expressed in mammalian COS cells were activated by stretch, and single channel recordings showed that the stretch-dependent conductance was due to 90 pS channels. Sodium nitroprusside (10(-6) or 10(-5) m) and 8-Br-cGMP (10(-4) or 10(-3) m) increased TREK-1 currents in perforated whole cell and single channel recordings. Mutation of the PKG consensus sequence at serine 351 blocked the stimulatory effects of sodium nitroprusside and 8-Br-cGMP on open probability without affecting the inhibitory effects of 8-Br-cAMP. TREK-1 encodes a component of the stretch-activated K(+) conductance in smooth muscles and may contribute to nitrergic inhibition of gastrointestinal muscles.  相似文献   

19.
The effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) on responses to sodium nitroprusside (SNP), S-nitroso-N-acetyl-penicillamine (SNAP), the nitroxyl anion donor Angeli's salt, and nitrergic nerve stimulation, as well as the release of NO from nitrergic nerves, were studied in the rat isolated anococcygeus muscle. YC-1 (1-100 microM) produced concentration-dependent relaxations in contracted muscles, which were partially but significantly reduced by the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 1 and 10 microM). At a concentration that did not affect tissue tension, YC-1 (1 microM) significantly enhanced relaxations to SNP, SNAP, and Angeli's salt but did not affect relaxations to papaverine (10 microM). Nitrergic relaxations elicited by short periods (1 Hz for 10 s, 15 V) and long periods of EFS (5 Hz for 5 min, 15 V) were also enhanced by YC-1. YC-1 (100 microM), in an l-NAME and tetrodotoxin-insensitive manner, also increased the amount of NO detected in the organ bath media after the tissue was field stimulated (5 Hz for 5 min), which may have resulted from the electrolytic degradation of YC-1, as this effect was also seen in the absence of tissue. In summary, YC-1 enhanced relaxations to donors of NO, Angeli's salt, and nitrergic nerve stimulation in the rat anococcygeus muscle; however, the enhanced release of NO by YC-1 following nitrergic nerve stimulation was not a tissue-dependent effect.  相似文献   

20.
Soluble guanylate cyclase (sGC) is a receptor for endogenous and exogenous nitric oxide (NO) and is activated many fold upon its binding, making it a core enzyme in the nitric oxide signal transduction pathway. Much effort has been made to understand the link between binding of NO at the sGC heme and activation of the cyclase activity. We report here the first direct evidence for the role of conformational changes in transmitting the signal between the heme and cyclase domains. Using both circular dichroism (CD) and fluorescence spectroscopies, we have probed the effect that the sGC activators NO and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole (YC-1) and the inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ) have on the structure of the protein. Surprisingly, binding of either ODQ or YC-1 to NO-bound sGC cause virtually identical changes in the far-UV CD spectra of sGC, reflecting a perturbation in the secondary structure of the enzyme. This change is absent upon binding of NO, YC-1 or ODQ alone. Using this and previous data, we propose a working model for the mechanism of activation of sGC by NO and YC-1 and inhibition by ODQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号