首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rice mutant defective in Si uptake   总被引:2,自引:0,他引:2  
Ma JF  Tamai K  Ichii M  Wu GF 《Plant physiology》2002,130(4):2111-2117
Rice (Oryza sativa) accumulates silicon (Si) in the tops to levels up to 10.0% of shoot dry weight, but the mechanism responsible for high Si uptake by rice roots is not understood. We isolated a rice mutant (GR1) that is defective in active Si uptake by screening M(2) seeds (64,000) of rice cv Oochikara that were treated with 10(-3) M sodium azide for 6 h at 25 degrees C. There were no phenotypic differences between wild type (WT) and GR1 except that the leaf blade of GR1 remained droopy when Si was supplied. Uptake experiments showed that Si uptake by GR1 was significantly lower than that by WT at both low and high Si concentrations. However, there was no difference in the uptake of other nutrients such as phosphorus and potassium. Si concentration in the xylem sap of WT was 33-fold that of the external solution, but that of GR1 was 3-fold higher than the external solution at 0.15 mM Si. Si uptake by WT was inhibited by metabolic inhibitors including NaCN and 2,4-dinitrophenol and by low temperature, whereas Si uptake by GR1 was not inhibited by these agents. These results suggest that an active transport system for Si uptake is disrupted in GR1. Analysis of F(2) populations between GR1 and WT showed that roots with high Si uptake and roots with low Si uptake segregated at a 3:1 ratio, suggesting that GR1 is a recessive mutant of Si uptake.  相似文献   

2.
Uptake system of silicon in different plant species   总被引:15,自引:0,他引:15  
The accumulation of silicon (Si) in the shoots varies considerably among plant species, but the mechanism responsible for this variation is poorly understood. The uptake system of Si was investigated in terms of the radial transport from the external solution to the root cortical cells and the release of Si from the cortical cells to the xylem in rice, cucumber, and tomato, which differ greatly in shoot Si concentration. Symplasmic solutions of the root tips were extracted by centrifugation. The concentrations of Si in the root-cell symplast in all species were higher than that in the external solution, although the concentration in rice was 3- and 5-fold higher than that in cucumber and tomato, respectively. A kinetic study showed that the radial transport of Si was mediated by a transporter with a K(m) value of 0.15 mM in all species, but with different V(max) values in the order of rice>cucumber>tomato. In the presence of the metabolic inhibitor 2,4-dinitrophenol, and at low temperature, the Si concentration in the root-cell symplast decreased to a level similar to that of the apoplasmic solution. These results suggest that both transporter-mediated transport and passive diffusion of Si are involved in the radial transport of Si and that the transporter-mediated transport is an energy-dependent process. The Si concentration of xylem sap in rice was 20- and 100-fold higher than that in cucumber and tomato, respectively. In contrast to rice, the Si concentration in the xylem sap was lower than that in the external solution in cucumber and tomato. A kinetic study showed that xylem loading of Si was also mediated by a kind of transporter in rice, but by passive diffusion in cucumber and tomato. These results indicate that a higher density of transporter for radial transport and the presence of a transporter for xylem loading are responsible for the high Si accumulation in rice.  相似文献   

3.
The faba bean (Vicia faba L.) is a potential source of proteins for poultry, mainly for laying hens whose protein requirements are lower than those of other birds such as growing broilers and turkeys. However, this feedstuff contains anti-nutritional factors, that is, vicine (V) and convicine (C) that are already known to reduce laying hen performance. The aim of the experiment reported here was to evaluate the effects of a wide range of dietary V and C concentrations in laying hens. Two trials were performed with laying hens fed diets including 20% or 25% of faba bean genotypes highly contrasting in V+C content. In Trial 1, faba beans from two tannin-containing cultivars, but with high or low V+C content were dehulled in order to eliminate the tannin effect. In addition to the contrasting levels of V+C in the two cultivars, two intermediate levels of V+C were obtained by mixing the two cultivars (70/30 and 30/70). In Trial 2, two isogenic zero-tannin faba bean genotypes with high or low V+C content were used. In both trials, a classical corn–soybean diet was also offered to control hens. Each experimental diet was given to 48 laying hens for 140 (Trial 1) or 89 (Trial 2) days. Laying performance and egg quality were measured. The redox sensitivity of red blood cells (RBCs) was assessed by measuring hemolysis and reduced glutathione (GSH) concentration in these cells. Egg weight was significantly reduced by the diets containing the highest concentrations of V+C (P<0.0001) in Trial 1 and slightly reduced (P<0.10) in Trial 2, but only weak linear relationships between egg weight and dietary V+C concentration were established. No negative effect of V+C level was observed for egg quality parameters. In contrast, certain parameters (i.e. Haugh units, yolk color) were improved by feeding low V+C diets (P<0.05). Hemolysis of RBCs was higher in hens fed high V+C diets. A decrease in GSH concentration in RBCs of hens fed the highest levels of V+C was observed. Faba bean genotypes with low concentrations of V+C can therefore be used in laying hen diets up to 25% without any detrimental effects on performance levels or egg characteristics, without any risk of hemolysis of RBCs.  相似文献   

4.
Here, we characterized silicon (Si) uptake and xylem loading in Oryza sativa, Zea mays, Helianthus annuus and Benincase hispida in a series of hydroponic experiments. Both active and passive Si-uptake components co-exist in all the plants tested. The active component is the major mechanism responsible for Si uptake in O. sativa and Z. mays. By contrast, passive uptake prevails in H. annuus and B. hispida at a higher external Si concentration (0.85 mM), while the active component constantly exists and contributes to the total Si uptake, especially at a lower external Si concentration (0.085 mM). Short experiments showed that Si uptake was significantly suppressed in O. sativa and Z. mays by metabolic inhibitors or low temperature, regardless of external Si concentrations. By contrast, Si uptake in H. annuus and B. hispida was inhibited more significantly by metabolic inhibitors or low temperature at lower (for example, 0.085 mM) than at higher (for example, 1.70 mM) external Si concentrations. It can be concluded that both active and passive Si-uptake components co-exist in O. sativa, Z. mays, H. annuus and B. hispida, with their relative contribution being dependent much upon both plant species and external Si concentrations.  相似文献   

5.
Brassica rapa plants were exposed for a 52 h period (as pretreatment) to a differential temperature (DT) between roots (5°C) and shoots (20°C), while control plants were maintained with both shoot and roots at 20°C (warm grown = WG). Measured at 20°C, volume flow of xylem exudate from roots of DT plants was enhanced compared with that from WG plants, while transpiration flows were similar in pretreated and control plants. Both transpiration and exudation flows were dependent upon shoot/root ratio. Differences in the volume flow of exudate were principally related to increases in root hydraulic conductance. Anion fluxes (notably nitrate) into xylem exudate of DT plants were significantly greater than those into exudate of WG plants. This enhancement of nitrate flow from the pretreated roots was associated with a two-fold increase in nitrate uptake rate. The relationship of the cold-induced change in nitrate uptake capacity with shoot/root ratio is discussed in terms of control of nitrate absorption by shoot sink strength.  相似文献   

6.
The aim of this study was to evaluate whether the responsiveness of mixed C3 grass species to elevated CO2 is related more to nitrogen uptake or to N-use efficiency. Nitrogen uptake and whole-plant N-use efficiency were investigated with two binary mixtures: Lolium perenne was mixed either with Festuca arundinacea or with Holcus lanatus. The swards were grown on sand with or without CO2 doubling, and subjected to two cutting frequencies. A C20 alcohol was used as a marker to determine species proportion in the total root mass of the mixtures. The mean residence time of N was calculated from that of 15N-labelled fertilizer. Lolium perenne took up significantly more N per unit root mass than its grass competitors, but its N-use efficiency was lower. Elevated CO2 significantly reduced the N uptake of the three grass species. A trade-off between N capture and use was found, as N-use efficiency and N-uptake rate were negatively correlated. A high N-use efficiency, and conversely low N uptake appeared to favour the responsiveness to elevated CO2 of the infrequently cut grasses.  相似文献   

7.
Identification of the silicon form in xylem sap of rice (Oryza sativa L.)   总被引:3,自引:0,他引:3  
Rice (Oryza sativa L.) is a typical silicon (Si)-accumulating plant, but the mechanism responsible for the translocation from the root to the shoot is poorly understood. In this study, the form of Si in xylem sap was identified by (29)Si-nuclear magnetic resonance (NMR) spectroscopy. In rice (cv. Oochikara) cultured in a monosilicic acid solution containing 0.5 mM Si, the Si concentration in the xylem reached 6 mM within 30 min. In the (29)Si-NMR spectra of the xylem sap, only one signal was observed at a chemical shift of -72.6 ppm, which is consistent with that of monosilicic acid. A (1)H-NMR study of xylem sap did not show any significant difference between the wild-type rice and mutant rice defective in Si uptake, and the components of the xylem sap were not affected by the Si supply. The Si concentration in the xylem sap in vitro decreased from an initial 18 mM to 2.6 mM with time. Addition of xylem sap to a solution containing 8 mM Si did not prevent the polymerization of silicic acid. All these results indicate that Si is translocated in the form of monosilicic acid through the xylem and that the concentration of monosilicic acid is high in the xylem only transiently.  相似文献   

8.
Douglas fir (Pseudotsuga menziesii) variety glauca (DFG) but not the variety viridis (DFV) showed symptoms of manganese (Mn) toxicity in some field sites. We hypothesized that these two varieties differed in Mn metabolism. To test this hypothesis, biomass partitioning, Mn concentrations, subcellular localization and 54Mn-transport were investigated. Total Mn uptake was three-times higher in DFG than in DFV. DFV retained > 90% of 54Mn in roots, whereas > 60% was transported to the shoot in DFG. The epidermis was probably the most efficient Mn barrier since DFV contained lower Mn concentrations in cortical cells and vacuoles of roots than DFG. In both varieties, xylem loading was restricted and phloem transport was low. However, sieve cells still contained high Mn concentrations. DFV displayed higher biomass production and higher shoot : root ratios than DFG. Our results clearly show that both varieties of Douglas fir differ significantly in Mn-uptake and allocation patterns rendering DFG more vulnerable to Mn toxicity.  相似文献   

9.
An association between favism (a hemolytic reaction to consumption of fava beans), glucose-6-phosphate dehydrogenase deficiency (G6PD(-)) and acid phosphatase locus 1 (ACP(1)) phenotypes has been reported; the frequency of carriers of the p(a) and p(c) ACP(1) alleles was found to be significantly higher in G6PD(-) individuals showing favism than in the general population. Here, we investigated the hypothesis that favism is caused by toxic Vicia faba substances, which in some ACP(1) phenotypes cause increased phosphorylation and consequently increased glycolysis, with strong reduction in reduced glutathione production, resulting in hemolysis. It has been demonstrated that ACP(1) f isoforms have physiological functions different from those of s isoforms and are responsible for most of the phosphatase activity, in addition to being less stable in the presence of oxidizing molecules. Thus, the C, CA and A phenotypes, characterized by lower concentrations of f isoforms, could be more susceptible to damage by oxidative events compared to the other phenotypes. To test this hypothesis, the (f+s) enzymatic activity of different ACP(1) phenotypes with and without added V. faba extract was analyzed. Enzymatic activities of ACP(1) A, -CA, -C groups (low activity) and -B, -BA, -CB groups (high activity) were significantly different after addition of V. faba extract. Phenotypes A, CA and C had extremely low enzymatic activity levels, which would lead to low levels of reduced glutathione and bring about erythrocyte lysis.  相似文献   

10.
A basic problem in silicon (Si) uptake studies in biology is the lack of an appropriate radioactive isotope. Radioactive germanium-68 ((68)Ge) has been used previously as a Si tracer in biological materials, but its suitability for the study of Si transport in higher plants is still untested. In this study, we investigated (68)Ge-traced Si uptake by four crop species differing widely in uptake capacity for Si, including rice (Oryza sativa), barley (Hordeum vulgare), cucumber (Cucumis sativus), and tomato (Lycopersicon esculentum). Maintenance of a (68)Ge:Si molar ratio that was similar in the plant tissues of all four plant species to that supplied in the nutrient solution over a wide range of Si concentrations demonstrated the absence of discrimination between (68)Ge and Si. Further, using the (68)Ge tracer, a typical Michaelis-Menten uptake kinetics for Si was found in rice, barley, and cucumber. Compared to rice, the relative proportion of root-to-shoot translocated Si was lower in barley and cucumber and especially in tomato (only 30%). Uptake and translocation of Si in rice, barley, and cucumber (Si accumulators) were strongly inhibited by 2,4-dinitrophenol and HgCl(2), but in tomato, as a Si-excluding species, both inhibitors produced the opposite effect. In conclusion, our results suggest the use of the (68)Ge tracer method as an appropriate choice for future studies of Si transport in plants. Our findings also indicate that the restriction of Si from symplast to apoplast in the cortex of Si excluders is a metabolically active process.  相似文献   

11.
Sedum alfredii is a well known cadmium (Cd) hyperaccumulator native to China; however, the mechanism behind its hyperaccumulation of Cd is not fully understood. Through several hydroponic experiments, characteristics of Cd uptake and translocation were investigated in the hyperaccumulating ecotype (HE) of S. alfredii in comparison with its non-hyperaccumulating ecotype (NHE). The results showed that at Cd level of 10 microM measured Cd uptake in HE was 3-4 times higher than the implied Cd uptake calculated from transpiration rate. Furthermore, inhibition of transpiration rate in the HE has no essential effect on Cd accumulation in shoots of the plants. Low temperature treatment (4 degrees C) significantly inhibited Cd uptake and reduced upward translocation of Cd to shoots for 9 times in HE plants, whereas no such effect was observed in NHE. Cadmium concentration was 3-4-fold higher in xylem sap of HE, as compared with that in external uptake solution, whereas opposite results were obtained for NHE. Cadmium concentration in xylem sap of HE was significantly reduced by the addition of metabolic inhibitors, carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), in the uptake solutions, whereas no such effect was noted in NHE. These results suggest that Cd uptake and translocation is an active process in plants of HE S. alfredii, symplastic pathway rather than apoplastic bypass contributes greatly to root uptake, xylem loading and translocation of Cd to the shoots of HE, in comparison with the NHE plants.  相似文献   

12.
Due to the fragile pressure gradients present in the xylem and phloem, methods to study sap flow must be minimally invasive. Magnetic resonance imaging (MRI) meets this condition. A dedicated MRI method to study sap flow has been applied to quantify long-distance xylem flow and hydraulics in an intact cucumber (Cucumis sativus) plant. The accuracy of this MRI method to quantify sap flow and effective flow-conducting area is demonstrated by measuring the flow characteristics of the water in a virtual slice through the stem and comparing the results with water uptake data and microscopy. The in-plane image resolution of 120 x 120 microm was high enough to distinguish large individual xylem vessels. Cooling the roots of the plant severely inhibited water uptake by the roots and increased the hydraulic resistance of the plant stem. This increase is at least partially due to the formation of embolisms in the xylem vessels. Refilling the larger vessels seems to be a lengthy process. Refilling started in the night after root cooling and continued while neighboring vessels at a distance of not more than 0.4 mm transported an equal amount of water as before root cooling. Relative differences in volume flow in different vascular bundles suggest differences in xylem tension for different vascular bundles. The amount of data and detail that are presented for this single plant demonstrates new possibilities for using MRI in studying the dynamics of long-distance transport in plants.  相似文献   

13.
Kage  Henning 《Plant and Soil》1997,190(1):47-60
It was the aim of this study was to evaluate the hypothesis that low rooting density of faba beans is the major reason for the comparable low depletion of Nmin-nitrogen from the rooted soil volume during the vegetation period. Therefore a simulation study was carried out using data from a two-year field experiment with faba beans and the reference crop oats. Since the nitrate dynamics in the soil is closely coupled with the water budget, the model simulated also the water uptake by plants, movement and content in the soil applying a numerical solution of the Richard's equation. The nitrogen budget part of the model includes calculation of vertical nitrate movement in the soil, mineralisation of nitrate from organic matter and nitrate uptake by the crop. Vertical nitrate movement was simulated with the convection-dispersion equation. Mineralisation was computed from a simple first order kinetic approach using only one fraction of mineralisable organic matter. Nitrate uptake was assumed to be determined either by the nitrogen demand of the crop, which was estimated from a logistic growth equation that was fitted to measured data of N-accumulation, or by the maximum nitrate transport rate towards the root surface. The latter was computed from a steady state solution of the diffusion - mass flow equation for cylindrical co-ordinates.For oats the model calculated a maximum nitrate transport rate towards roots that was quite close to the measured N-uptake of that crop. For faba beans, however, the calculated maximum nitrate transport towards roots was much lower than total N-uptake and lower than for oats. Consequently, simulated Nmin-contents below faba beans were during the growing season about 20-30 kg N ha–1 higher than below oats. This difference matches quite close with the observed differences between the two crops. Therefore it was concluded that low nitrate uptake resulting from low rooting density is the main reason for higher residual nitrate contents below faba beans at harvest time.  相似文献   

14.
A transporter regulating silicon distribution in rice shoots   总被引:6,自引:0,他引:6  
Yamaji N  Mitatni N  Ma JF 《The Plant cell》2008,20(5):1381-1389
Rice (Oryza sativa) accumulates very high concentrations of silicon (Si) in the shoots, and the deposition of Si as amorphous silica helps plants to overcome biotic and abiotic stresses. Here, we describe a transporter, Lsi6, which is involved in the distribution of Si in the shoots. Lsi6 belongs to the nodulin-26 intrinsic protein III subgroup of aquaporins and is permeable to silicic acid. Lsi6 is expressed in the leaf sheath and leaf blades as well as in the root tips. Cellular localization studies revealed that Lsi6 is found in the xylem parenchyma cells of the leaf sheath and leaf blades. Moreover, Lsi6 showed polar localization at the side facing toward the vessel. Knockdown of Lsi6 did not affect the uptake of Si by the roots but resulted in disordered deposition of silica in the shoots and increased excretion of Si in the guttation fluid. These results indicate that Lsi6 is a transporter responsible for the transport of Si out of the xylem and subsequently affects the distribution of Si in the leaf.  相似文献   

15.
South-eastern Utah forms a northern border for the region currently influenced by the Arizona monosoonal system, which feeds moisture and summer precipitation into western North America. One major consequence predicted by global climate change scenarios is an intensification of monosoonal (summer) precipitation in the aridland areas of the western United States. We examined the capacity of dominant perennial shrubs in a Colorado Plateau cold desert ecosystem of southern Utah, United States, to use summer moisture inputs. We simulated increases of 25 and 50 mm summer rain events on Atriplex canescens, Artemisia filifolia, Chrysothamnus nauseosus, Coleogyne ramosissima, and Vanclevea stylosa, in July and September with an isotopically enriched water (enriched in deuterium but not 18O). The uptake of this artificial water source was estimated by analyzing hydrogen and oxygen isotope ratios of stem water. The predawn and midday xylem water potentials and foliar carbon isotope discrimination were measured to estimate changes in water status and water-use efficiency. At. canescens and Ch. nauseosus showed little if any uptake of summer rains in either July or September. The predawn and midday xylem water potentials for control and treatment plants of these two species were not significantly different from each other. For A. filifolia and V. stylosa, up to 50% of xylem water was from the simulated summer rain, but the predawn and midday xylem water potentials were not significantly affected by the additional summer moisture input. In contrast, C. ramosissima showed significant uptake of the simulated summer rain (>50% of xylem water was from the artificial summer rain) and an increase in both predawn and midday water potentials. The percent uptake of simulated summer rain was greater when those rains were applied in September than in July, implying that high soil temperature in midsummer may in some way inhibit water uptake. Foliar carbon isotope discrimination increased significantly in the three shrubs taking up simulated summer rain, but pre-treatment differences in the absolute discrimination values were maintained among species. The ecological implications of our results are discussed in terms of the dynamics of this desert community in response to changes in the frequency and dependability of summer rains that might be associated with a northward shift in the Arizona monsoon boundary.  相似文献   

16.
Coupling between electron transport and proton flux has been compared in chloroplasts from Vicia faba (cv. Windsor) plants grown at 20 and 5°C. Proton uptake by warm-grown thylakoids was sensitive to external pH and stimulated by micromolar adenine nucleotide above pH 7.0. Electron transport was modulated by pH, adenine nucleotide and energy transfer inhibitors (triphenyltin and Hg2+). By contrast, proton uptake by cold-grown thylakoids was generally lower and was insensitive to micromolar ATP. The rate of non-phosphorylating electron flow in cold-grown thylakoids was relatively insensitive to pH and Hg2+ and was not modulated by adenine nucleotides or triphenyltin. Stimulation of electron transport by phosphorylating conditions in cold-grown thylakoids was generally lower and insensitive to pH. It is concluded that the control of proton efflux through CF0-CF1 differs in thylakoids of V. faba grown at warm and cold temperatures.  相似文献   

17.
Selenite can be a dominant form of selenium (Se) in aerobic soils; however, unlike selenate, the mechanism of selenite uptake by plants remains unclear. Uptake, translocation and Se speciation in wheat (Triticum aestivum) supplied with selenate or selenite, or both, were investigated in hydroponic experiments. The kinetics of selenite influx was determined in short-term (30 min) experiments. Selenium speciation in the water-extractable fraction of roots and shoots was determined by HPLC-ICPMS. Plants absorbed similar amounts of Se within 1 d when supplied with selenite or selenate. Selenate and selenite uptake were enhanced in sulphur-starved and phosphorus-starved plants, respectively. Phosphate markedly increased K(m) of the selenite influx. Selenate and selenite uptake were both metabolically dependent. Selenite was rapidly converted to organic forms in roots, with limited translocation to shoots. Selenomethionine, selenomethionine Se-oxide, Se-methyl-selenocysteine and several other unidentified Se species were detected in the root extracts and xylem sap from selenite-treated plants. Selenate was highly mobile in xylem transport, but little was assimilated to organic forms in 1 d. The presence of selenite decreased selenate uptake and xylem transport. Selenite uptake is an active process likely mediated, at least partly, by phosphate transporters. Selenite and selenate differ greatly in the ease of assimilation and xylem transport.  相似文献   

18.
Ma JF  Hiradate S 《Planta》2000,211(3):355-360
 The forms of Al for uptake by the roots and translocation from the root to the shoot were investigated in a buckwheat (Fagopyrum esculentum Moench, cv. Jianxi) that accumulates Al in its leaves. The Al concentration in the xylem sap was 15-fold higher in the plants exposed to AlCl3 than in those exposed to an Al-oxalate (1:3) complex, suggesting that the roots take up Al in the ionic form. The Al concentration in the xylem sap was 4-fold higher than that in the external solution after a 1-h exposure to AlCl3 solution and 10-fold higher after a 2-h exposure. The Al concentration in the xylem sap increased with increasing Al concentration in the external solution. The Al uptake was not affected by a respiratory inhibitor, hydroxylamine, but significantly inhibited by the addition of La. These results suggest that Al uptake by the root is a passive process, and La3+ competes for the binding sites for Al3+ on the plasma membrane. The form of Al in the xylem sap was identified by 27Al-nuclear magnetic resonance analysis. The chemical shift of 27Al in the xylem sap was around 10.9 ppm, which is consistent with that of the Al-citrate complex. Furthermore, the dominant organic acid in the xylem sap was citric acid, indicating that Al was translocated in the form of Al-citrate complex. Because Al is present as Al-oxalate (1:3) in the root, the present data show that ligand exchange from oxalate to citrate occurs before Al is released to xylem. Received: 10 December 1999 / Accepted: 3 February 2000  相似文献   

19.
张悦  施和平 《生物工程学报》2008,24(9):1604-1612
采用液体培养的方法研究了培养基磷缺乏对黄瓜毛状根生长及其抗氧化酶活性及培养基中氮源和钙利用的影响.结果表明,黄瓜毛状根在完全缺磷的培养基中几乎不能生长;而培养基无机磷缺乏会抑制黄瓜毛状根的生长,且浓度越低,其抑制作用越明显,毛状根变得越纤细而长,侧根数减少且短小.与全磷培养相比,磷缺乏培养基培养的黄瓜毛状根可溶性蛋白含量明显偏低,但其SOD和POD活性则明显升高.与完全缺磷(对照)相比,在培养过程中不同无机磷浓度培养的黄瓜毛状根的SOD和POD活性均比对照低.当黄瓜毛状根在不同磷缺乏浓度的液体培养基中培养时,随着培养时间的延长,培养基的电导率逐步下降,并与培养基起始无机磷浓度成正比;其培养基的铵态氮和硝态氮不断被吸收和利用,培养至15d时,培养基中的铵态氮已绝大部分被消耗完毕,但直至培养30d时培养基的硝态氮仍未被消耗完毕.培养基中无机磷缺乏会降低黄瓜毛状根对培养基硝态氮的吸收和消耗以及抑制黄瓜毛状根对钙的吸收.而适当提高培养基的无机磷浓度可促进黄瓜毛状根对培养基中钙的吸收和消耗.  相似文献   

20.
Gaseous fluxes of peroxyacetyl nitrate (PAN) into plant leaves   总被引:1,自引:0,他引:1  
Peroxyactyl nitrate (PAN) is the most abundant of the gaseous organic nitrates produced from the photochemistry of hydrocarbons and NOx (i.e. ozone and smog production). PAN is known to be toxic to plants and also as a reservoir for the transport nitrogen dioxide in the troposphere. Here, the effect of vegetation on PAN deposition was investigated in four plant species by measuring leaf fluxes of PAN in a dynamic leaf chamber using atmospheric PAN fumigations between 0.7 and 18 nmol mol?1. A linear relationship was observed between PAN flux and ambient PAN mixing ratio for all species. Depending on the species, measured PAN flux varied between 11 and 24 pmol m?2 s?1. Measured fluxes of PAN accounted for 12–48% of the PAN flux predicted solely from modelled stomatal conductance to PAN, suggesting the presence of a mesophyllic resistance to PAN uptake. The brief (approximately 5–10 min) exposure to PAN during uptake measurements did not affect photosynthesis, transpiration or conductance to water vapour. Increasing stomatal resistance by varying the vapour pressure gradient between the leaf chamber and leaf internal air space led to a corresponding drop in PAN uptake. Varying leaf nitrogen and total leaf–ascorbate concentrations did not appear to influence PAN uptake as had been reported for other reactive odd‐nitrogen gases. Measured and model‐predicted PAN fluxes were offset, but correlated suggesting that PAN flux could be estimated using established stomatal conductance algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号