首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S.J. HIOM, J.R. FURR, A.D. RUSSELL AND J.R. DICKINSON, 1992. The effects of chlorhexidine diacetate (CHA) on Candida albicans, C. glabrata and wild-type and mannan, and permeability mutants of Saccharomyces cerevisiae have been studied. A CHA concentration of 10 μg/ml had little lethal activity against the Candida strains, but was more effective against S. cerevisiae. Concentrations of 100 and especially 1000 μg/ml brought about a much more rapid death of cells. 2-Mercaptoethanol enhanced the activity of CHA to some extent. Some of the mutant strains of S. cerevisiae were rather more sensitive than the wild-type strain. The age of cultures of C. albicans and C. glabrata influenced their response to CHA.  相似文献   

2.
Ure2p of Candida albicans (Ure2(albicans) or CaUre2p) can be a prion in Saccharomyces cerevisiae, but Ure2p of Candida glabrata (Ure2(glabrata)) cannot, even though the Ure2(glabrata) N-terminal domain is more similar to that of the S. cerevisiae Ure2p (Ure2(cerevisiae)) than Ure2(albicans) is. We show that the N-terminal N/Q-rich prion domain of Ure2(albicans) forms amyloid that is infectious, transmitting [URE3alb] to S. cerevisiae cells expressing only C. albicans Ure2p. Using solid-state nuclear magnetic resonance of selectively labeled C. albicans Ure2p(1-90), we show that this infectious amyloid has an in-register parallel β-sheet structure, like that of the S. cerevisiae Ure2p prion domain and other S. cerevisiae prion amyloids. In contrast, the N/Q-rich N-terminal domain of Ure2(glabrata) does not readily form amyloid, and that formed upon prolonged incubation is not infectious.  相似文献   

3.
4.
The results of microbiological vaginal secretions samples obtained from 749 women (from July 2001 to July 2002) were studied in the Bacteriology Unit of the Francisco Javier Mu?iz Hospital from Buenos Aires. All patients suffered acute vulvovaginitis were child bearing and sexually active women, 334 of them were HIV-positive. The following are the results of the microbiological studies: Lactobacillus spp 50.6%, Gardnerella vaginalis 25.6%, Candida spp 17.4%, Trichomonas vaginalis 5.3%, Neisseria gonorrhoeae 0.3% and B group Streptococcus 0.8%. Candida vaginitis was significantly more frequent in HIV-positive patients, (21.6% vs 14%; p = 0.0086); meanwhile, trichomoniasis was less common although the difference was not statistically significant (3.6 vs 6.7%, p = 0.0810). The following Candida species were isolated in this study: Candida albicans 76.8%, Candida glabrata 15.6%, Candida parapsilosis 2.9%, Candida tropicalis 1.5% and Candida krusei 0.7%. Eight cases (6.2%) of vaginitis were produced by two Candida species (C. albicans and C. glabrata), and in three cases (2.17%) Saccharomyces cerevisiae were isolated. Five women suffering acute vaginitis with Candida spp presented another etiologic agent of vaginal infection, three cases T. vaginalis and two cases G. vaginalis. The following are some of the most important findings of this study: 1) Half of the patients presented a normal microbial biota; 2) Candida spp vaginitis was significantly more frequent among HIV-positive women; 3) we observed a high incidence of Candida glabrata infections (15.9%), 4) 6.2% of vaginal candidiasis were caused by more than one Candida species and, 5) the susceptibility pattern of C. albicans and C. glabrata isolates against fluconazole was similar to the one observed in other studies. The majority of C. albicans isolates were susceptible to fluconazole (MIC90 = 0.5 microg/ml) meanwhile C. glabrata strains were much less susceptible to this drug (MIC50 and MIC90 = 32 microg/ml).  相似文献   

5.
Stoyan T  Carbon J 《Eukaryotic cell》2004,3(5):1154-1163
The human pathogenic yeast Candida glabrata is the second most common Candida pathogen after Candida albicans, causing both bloodstream and mucosal infections. The centromere (CEN) DNA of C. glabrata (CgCEN), although structurally very similar to that of Saccharomyces cerevisiae, is not functional in S. cerevisiae. To further examine the structure of the C. glabrata inner kinetochore, we isolated several C. glabrata homologs of S. cerevisiae inner kinetochore protein genes, namely, genes for components of the CBF3 complex (Ndc10p, Cep3p, and Ctf13p) and genes for the proteins Mif2p and Cse4p. The amino acid sequence identities of these proteins were 32 to 49% relative to S. cerevisiae. CgNDC10, CgCEP3, and CgCTF13 are required for growth in C. glabrata and are specifically found at CgCEN, as demonstrated by chromatin immunoprecipitation experiments. Cross-complementation experiments revealed that the isolated genes, with the exception of CgCSE4, are species specific and cannot functionally substitute for the corresponding genes in S. cerevisiae deletion strains. Likewise, the S. cerevisiae CBF3 genes NDC10, CEP3, and CTF13 cannot functionally replace their homologs in C. glabrata CBF3 deletion strains. Two-hybrid analysis revealed several interactions between these proteins, all of which were previously reported for the inner kinetochore proteins of S. cerevisiae. Our findings indicate that although many of the inner kinetochore components have evolved considerably between the two closely related species, the organization of the C. glabrata inner kinetochore is similar to that in S. cerevisiae.  相似文献   

6.
To investigate the role of the prevacuolar secretion pathway in the trafficking of vacuolar proteins in Candida albicans, the C. albicans homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene VPS4 was cloned and analyzed. Candida albicans VPS4 encodes a deduced AAA-type ATPase that is 75.6% similar to S. cerevisiae Vps4p, and plasmids bearing C. albicans VPS4 complemented the abnormal vacuolar morphology and carboxypeptidase missorting in S. cerevisiae vps4 null mutants. Candida albicans vps4Delta null mutants displayed a characteristic class E vacuolar morphology and multilamellar structures consistent with an aberrant prevacuolar compartment. The C. albicans vps4Delta mutant degraded more extracellular bovine serum albumin than did wild-type strains, which implied that this mutant secreted more extracellular protease activity. These phenotypes were complemented when a wild-type copy of VPS4 was reintroduced into its proper locus. Using a series of protease inhibitors, the origin of this extracellular protease activity was identified as a serine protease, and genetic analyses using a C. albicans vps4Deltaprc1Delta mutant identified this missorted vacuolar protease as carboxypeptidase Y. Unexpectedly, C. albicans Sap2p was not detected in culture supernatants of the vps4Delta mutants. These results indicate that C. albicans VPS4 is required for vacuolar biogenesis and proper sorting of vacuolar proteins.  相似文献   

7.
Small subunit rRNA sequences have been determined for 10 of the most clinically important pathogenic species of the yeast genus Candida (including Torulopsis [Candida] glabrata and Yarrowia [Candida] lipolytica) and for Hansenula polymorpha. Phylogenetic analyses of these sequences and those of Saccharomyces cerevisiae, Kluyveromyces marxianus var. lactis, and Aspergillus fumigatus indicate that Candida albicans, C. tropicalis, C. parapsilosis, and C. viswanathii form a subgroup within the genus. The remaining significant pathogen, T. glabrata, falls into a second, distinct subgroup and is specifically related to S. cerevisiae and more distantly related to C. kefyr (psuedotropicalis) and K. marxianus var. lactis. The 18S rRNA sequence of Y. lipolytica has evolved rapidly in relation to the other Candida sequences examined and appears to be only distantly related to them. As anticipated, species of several other genera appear to bear specific relationships to members of the genus Candida.  相似文献   

8.
A novel sordarin derivative, moriniafungin (1), containing a 2-hydroxysebacic acid residue linked to C-3' of the sordarose residue of sordarin through a 1,3-dioxolan-4-one ring was isolated from the fungus Morinia pestalozzioides. Isolation of moriniafungin employed a highly specific bioassay consisting of a panel of Saccharomyces cerevisiae strains containing chimeric eEF2 for Candida glabrata, Candida krusei, Candida lusitaniae, Crytpococcus neoformans, and Aspergillus fumigatus as well as wild type and human eEF2. Moriniafungin exhibited an MIC of 6 microg/mL versus Candida albicans and IC(50)'s ranging from 0.9 to 70 microg/mL against a panel of clinically relevant Candida strains. Moriniafungin was shown to inhibit in vitro translation in the chimeric S. cerevisae strains at levels consistent with the observed IC(50). Moriniafungin has the broadest antifungal spectrum and most potent activity of any natural sordarin analog identified to date.  相似文献   

9.
Papyriflavonol A (PapA), a prenylated flavonoid (5,7,3',4'-tetrahydroxy-6,5'-di-(r,r-dimethylallyl)-flavonol), was isolated from the root barks of Broussonetia papyriferra. Our previous study showed that PapA has a broad-spectrum antimicrobial activity against pathogenic bacteria and fungi. In this study, the mode of action of PapA against Candida albicans was investigated to evaluate PapA as antifungal agent. The minimal inhibitory concentration (MIC) values were 10~25 microgram/ml for C. albicans and Saccharomyces cerevisiae, gram-negative bacteria (Escherichia coli and Salmonella typhimurium) and gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus). The kinetics of cell growth inhibition, scanning electron microscopy, and measurement of plasma membrane florescence anisotrophy revealed that the antifungal activity of PapA against C. albicans and S. cerevisiae is mediated by its ability to disrupt the cell membrane integrity. Compared with amphotericin B, a cell membrane disrupting polyene antibiotic, the hemolytic toxicity of PapA was negligible. At 10~25 microgram/ml of MIC levels for the tested strains, the hemolysis ratio of human erythrocytes was less than 5%. Our results suggest that PapA could be a therapeutic fungicidal agent having a broad spectrum antimicrobial agent.  相似文献   

10.
An IMP dehydrogenase gene was isolated from Candida albicans on a approximately 2.9-kb XbaI genomic DNA fragment. The putative Candida IMP dehydrogenase gene (IMH3) encodes a protein of 521 amino acids with extensive sequence similarity to the IMP dehydrogenases of Saccharomyces cerevisiae and various other organisms. Like the S. cerevisiae IMH3 sequence characterized in the genome sequencing project, the open reading frame of the C. albicans IMH3 gene is interrupted by a small intron (248 bp) with typical exon-intron boundaries and a consensus S. cerevisiae branchpoint sequence. IMP dehydrogenase mRNAs are detected in both the yeast and hyphal forms of C. albicans as judged by Northern hybridization. Growth of wild-type (sensitive) C. albicans cells is inhibited at 1 microg of mycophenolic acid (MPA), a specific inhibitor of IMP dehydrogenases, per ml, whereas transformants hosting a plasmid with the IMH3 gene are resistant to MPA levels of up to at least 40 microg/ml. The resistance of cells to MPA is gene dosage dependent and suggests that IMH3 can be used as a dominant selection marker in C. albicans.  相似文献   

11.
Saccharomyces cerevisiae and Candida albicans were incubated with 0.25, 0.5, or 0.75 micrograms of Hg (as HgCl2) per ml of Nelson's medium in the presence of trace amounts of oxygen at 28 degrees C for 12 days. Two control media were used, one without added Hg and one without yeast inoculum. Yeast cell growth was estimated after 1, 2, 3, and 8 days of incubation. The contents of organomercury in the system and of elemental mercury released from the media and collected in traps were determined at the end of the experiments. The results were as follows. (i) C. albicans was the more mercury-resistant species, but both yeast species failed to grow in the media containing 0.75 micrograms of Hg per ml. (ii) The amounts of organomercury produced by the two species were proportional to the amount of HgCl2 added to the medium. In all cases C. albicans produced considerably larger amounts of methylmercury than S. cerevisiae. (iii) The amounts of elemental Hg produced were inversely proportional to the HgCl2 level added in the case of S. cerevisiae but were all similar in the case of C. albicans. (iv) Neither organomercury nor elemental Hg was produced in any of the control media.  相似文献   

12.
The aim of this study was to determine the prevalence of primary resistance to 5-fluorocytosine (5FC) among clinical isolates of yeasts in Spain where this drug is not currently available for therapy. We have tested the in vitro activity of 5FC against 1,021 recent yeast clinical isolates, including 522 Candida albicans, 140 Candida parapsilosis, 68 Candida glabrata, 41 Candida dubliniensis, 50 Candida guilliermondii, 34 Candida tropicalis, 28 Candida krusei, 20 Candida famata, 11 Cryptococcus neoformans, 5 Cryptococcus albidus, 43 Rhodotorula spp., 24 Trichosporon spp., 5 Saccharomyces cerevisiae, 9 Pichia spp., and 21 isolates from other 11 yeast species. The MICs were determined by the ATB Fungus agar microdilution test (bioMerieux, France) and the following interpretive breakpoints were used: susceptible, > 4 microg/ml; intermediate, 8 to 16 microg/ml; resistant, > 32 microg/ml. 5FC was very active against Candida spp. and other medically important yeasts as 852 (83.4%) of the studied isolates were susceptible (MIC < 4 microg/ml). The species most susceptible to 5FC were C. dubliniensis (100%of isolates; MIC90, 0.25 microg/ml), C. famata (100% of isolates; MIC90, 0.25 microg/ml), C. guilliermondii (98%of isolates; MIC90, 0.25 microg/ml), C. glabrata (95.5% of isolates; MIC90, 0.25 microg/ml), and C. neoformans (90.9% of isolates; MIC90, 2 microg/ml). Primary resistance to 5FC was very uncommon, and a MIC > 32 microg/ml, indicator of in vitro resistance, was observed in 106 isolates (10.4%): 77 C. albicans (16.5% of isolates; MIC90, > 128 microg/ml), 9 C. parapsilosis (6.4% of isolates; MIC90, 8 microg/ml), 4 C. albidus (80% of isolates, MIC50, > 128 microg/ml), 3 C. glabrata (4.4% of isolates; MIC90, 0.25 microg/ml), 3 C. tropicalis (8.8% of isolates; MIC90, 4 microg/ml), 2 C. krusei (7.1% of isolates; MIC90, 8 microg/ml), 2 Rhodotorula spp. (4.6% of isolates, MIC90, 1 microg/ml), 8 Trichosporon spp. (33.3% of isolates; MIC90, 64 microg/ml), and 1 C. lipolytica (50% of isolates). Interestingly, most C. albicans (67 out of 77 isolates) resistant to 5FC were serotype B isolates.  相似文献   

13.
Uptake of radiolabelled chlorhexidine gluconate (14C-CHG) to Saccharomyces cerevisiae, Candida albicans and C. glabrata was very rapid and near maximal within 30 s. The organism, S. cerevisiae , most sensitive to the lethal action of chlorhexidine, took up significantly more biocide than the other organisms. Cells from cultures of different ages took up different amounts of 14C-CHG.  相似文献   

14.
We describe a novel plasma membrane cystine transporter, CgCYN1, from Candida glabrata, the first such transporter to be described from yeast and fungi. C. glabrata met15Δ strains, organic sulfur auxotrophs, were observed to utilize cystine as a sulfur source, and this phenotype was exploited in the discovery of CgCYN1. Heterologous expression of CgCYN1 in Saccharomyces cerevisiae met15Δ strains conferred the ability of S. cerevisiae strains to grow on cystine. Deletion of the CgCYN1 ORF (CAGL0M00154g) in C. glabrata met15Δ strains caused abrogation of growth on cystine with growth being restored when CgCYN1 was reintroduced. The CgCYN1 protein belongs to the amino acid permease family of transporters, with no similarity to known plasma membrane cystine transporters of bacteria and humans, or lysosomal cystine transporters of humans/yeast. Kinetic studies revealed a K(m) of 18 ± 5 μM for cystine. Cystine uptake was inhibited by cystine, but not by other amino acids, including cysteine. The structurally similar cystathionine, lanthionine, and selenocystine alone inhibited transport, confirming that the transporter was specific for cystine. CgCYN1 localized to the plasma membrane and transport was energy-dependent. Functional orthologues could be demonstrated from other pathogenic yeast like Candida albicans and Histoplasma capsulatum, but were absent in Schizosaccharomyces pombe and S. cerevisiae.  相似文献   

15.
Susceptibility to fluconazole and amphotericin B in 84 clinical isolates of Candida was determined by a macrodilution method (NCCLS). Amphotericin B was very active (CMI < 1.25 microg/ml) against C. tropicalis and C. parapsilosis. Less than 5% of C. albicans and/or C. glabrata isolates presented low susceptibility to the drug (CMI 80 > 2.50 microg/ml). Fluconazole was less active against C. glabrata and C. krusei (CMI 80 > 100 microg/ml). The susceptibility profile for fluconazole indicated the importance to the treatment of identification to species level.  相似文献   

16.
A cell-free poly(U)-dependent translation elongation system from Candida albicans is ATP-dependent due to the presence of an elongation factor 3 (EF3)-like activity. Saccharomyces cerevisiae ribosomes added to a C. albicans postribosomal supernatant (PRS) supported poly(U)-dependent elongation, suggesting that the C. albicans lysate contained a soluble translation factor functionally analogous to the S. cerevisiae translation factor EF-3. The presence of EF-3 in C. albicans was confirmed by Western blotting using an antibody raised against S. cerevisiae EF-3. This antibody was also used to screen a selection of Candida species, all of which possessed EF-3 with molecular mass in the range of 110-130 kDa.  相似文献   

17.
Structure-activity relationships of a novel series of fungal efflux pump inhibitors with respect to potentiation of the activity of fluconazole against strains of Candida albicans and Candida glabrata over-expressing ABC-type efflux pumps are systematically explored.  相似文献   

18.
A series of hydrolysable tannins and related compounds was evaluated for antifungal activities against filamentous fungi (Epidermophyton floccosum; Microsporum canis; Microsporum gypseum; Trichophyton mentagrophytes; Trichophyton rubrum; Trichophyton tonsurans; Trichophyton terrestre; Penicillium italicum; Aspergillus fumigatus; Mucor racemosus; Rhizopus nigricans) and opportunistic yeasts (Candida albicans; Candida glabrata; Candidata krusei; Cryptococcus neoformans), using the agar dilution method. While all samples had no activity against the filamentous fungi in concentrations of 1.1-5.9 microM (1000 microg/ml), the phenolic compounds displayed significant potencies against all the opportunistic yeasts tested but C. albicans, with minimum inhibitory concentrations ranging from 0.02 to 0.1 microM (16-125 microg/ml). Although the presence of galloyl groups in flavonoids did not necessarily produce activity, this structural element, an HHDP moiety or its oxidatively modified entity proved to be an important structural feature of hydrolysable tannins. Comparison of dilution methods provided strong evidence of dependence of MIC values on the test method. Employing the microdilution broth method, the ellagitannin corilagin (MIC 0.8 nM) was found to be similarly potentially active as amphotericin B (MIC 0.5 nM) and sertaconazole (MIC 0.9 nM) against Candida glabrata strains. The order of effectiveness observed being 64- and 4-8-fold increased for corilagin and the reference compounds respectively, when compared with that of the agar dilution test.  相似文献   

19.
探究米诺环素在体外对常见酵母菌的药敏特点。采用Rosco纸片扩散法对168株常见的几种假丝酵母菌进行米诺环素的药敏试验。米诺环素有抑菌环的比率:白假丝酵母菌41%,光滑假丝酵母菌1.2%,热带假丝酵母菌和克柔假丝酵母菌没有抑菌环。在常见几种酵母菌中,米诺环素几乎只对白假丝酵母菌在体外有抗菌活性。  相似文献   

20.
Recent studies reported that an first generation azole (tioconazole) was active against Candida glabrata petite mutants, a fluconazole- and voriconazole- resistant strain of fungi characterized as most azole resistant yeast by an overexpression of the efflux pumps. Therefore, monosubstituted 1-[2-(2,4-dichlorophenyl)ethyl]-1H-imidazoles differing from tioconazole by the nature of the linker and of the aromatic ring in their side-chain were synthesized and evaluated against the mutant and the wild-type strain of C. glabrata. New 2-aryl-1-azolyl-3-thienylbutan-2-ols were then designed and synthesized, and their antifungal activity was evaluated against both strains of C. glabrata and two other major human pathogenic fungi, C. albicans and Aspergillus fumigatus. These new compounds exhibited a broad spectrum activity, as well as good efficiency against the petite mutant, suggesting that they may overcome the increased expression of the efflux pumps usually observed in clinical yeast isolates resistant to current azoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号