首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
I Joung  J A Engler 《Journal of virology》1992,66(10):5788-5796
Several point and linker insertion mutations in two Cys-His-rich regions of adenovirus (Ad) DNA polymerase (Pol) gene have been expressed in recombinant vaccinia virus. The resulting mutant enzymes were analyzed in vitro for their effects on DNA synthesis activity, on Ad-specific initiation assays, on gel shifts of Ad origin sequences, and on interactions with adenovirus preterminal protein (pTP) and nuclear factor I (NFI). In general, mutants in downstream Cys-His sequences had a pronounced effect in these assays. Mutants in the upstream Cys-His region had a moderate effect on DNA synthesis and elongation but failed to make dCMP-pTP initiation complexes and failed to make specific shifted complexes in a gel retardation assay. These mutants could still bind to pTP and NFI in a coimmunoprecipitation experiment, suggesting that this upstream Cys-His region of Ad Pol is involved either in specific Ad DNA origin binding or in nonspecific DNA binding. Changing residues within Cys doublets in the downstream Cys-His region had pronounced effects on many Ad Pol functions such as DNA synthesis, DNA binding, and in vitro initiation; however, these mutants showed little reduction in binding to pTP and NFI; mutants at other cysteines or histidines within this region of Ad Pol did not appear to have an effect on enzyme function. This observation suggests that the downstream Cys-His region of Ad Pol is important for DNA binding and might fold into a Zn finger motif.  相似文献   

4.
An assay is described that detects in vivo a single round of initiation and DNA synthesis directed by a linear molecule containing an exposed single copy of an adenovirus (Ad) origin of replication. This and a previously described assay, which measures multiple rounds of DNA replication, were used to identify DNA sequences within the Ad2 and Ad4 origins of replication that are important for ori function. Linear DNA molecules containing sequences from the Ad2 or Ad4 genome termini were cotransfected with homologous and heterologous helper virus, and net amounts of DNA synthesis were compared. Linear molecules containing the Ad4 inverted terminal repeats were replicated 20-fold better in the presence of the homologous helper, whereas both Ad2 and Ad4 inverted terminal repeats were utilized efficiently by Ad4. DNA sequence analysis of the Ad2 ori and the corresponding region in Ad4 indicated that, although there are only ten variant base-pairs, eight are located within the Ad2 DNA sequence recognized by the cellular protein nuclear factor I. This protein is required to achieve the maximal rate of Ad2 DNA replication in vitro, and these differences therefore identify DNA sequences that are crucial to Ad2 ori function. The Ad4 ITR does not contain a functional nuclear factor I binding site, and deletion analysis has demonstrated that this region of the Ad4 genome is not required for ori function. In contrast to Ad2, the DNA sequences required for the initiation of Ad4 DNA replication were shown to reside entirely within the terminal 18 base-pairs of the Ad4 inverted terminal repeat.  相似文献   

5.
6.
Nuclear factor I is a host-coded DNA-binding protein that stimulates initiation of adenovirus DNA replication. To understand the mechanism of action of nuclear factor I, we have constructed, by recombinant DNA techniques, origins of replication in which the adenovirus type 5 nuclear factor I binding site (FIB site) has been replaced by a FIB site isolated from human genomic DNA (Gronostajski, R. M., Nagata, K., and Hurwitz, J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4013-4017). Assays of such recombinants for initiation and elongation in vitro showed that nuclear factor I was active only when the FIB site was relatively close to the DNA terminus, i.e. the FIB site was centered at nucleotides 30-36 from the end of the DNA. Nuclear factor I was active in either orientation within this distance range. The presence of one or two additional FIB sites in the downstream region had no effect. The implications of these results for the mechanism of nuclear factor I action are discussed.  相似文献   

7.
The adenovirus-encoded 140-kDa DNA polymerase (Ad Pol) and the 59-kDa DNA binding protein (Ad DBP) are both required for the replication of viral DNA in vivo and in vitro. Previous studies demonstrated that, when poly(dT).oligo(dA) was used as a template-primer, both proteins were required for poly(dA) synthesis. In this report, the interaction between the Ad Pol and Ad DBP was further investigated using poly(dT).oligo(dA) as well as a linear duplex molecule containing 3' poly(dT) tails. DNA synthesis with the tailed template required Ad Pol, Ad DBP, and an oligo(dA) primer hydrogen bonded to the poly(dT) tails. Incorporation was stimulated 8-10-fold by ATP; however, no evidence of ATP hydrolysis to ADP was observed. Synthesis was initiated at either end of the tailed molecule and proceeded through the duplex region to the end of the molecule. This ability to translocate through duplex DNA and to synthesize long poly(dA) chains suggests that the Ad Pol.Ad DBP complex can act efficiently in the elongation reactions involved in the replication of Ad DNA (both type I and type II). During the replication reaction, substantial hydrolysis of deoxynucleoside triphosphates to the corresponding deoxynucleoside monophosphates occurred. This reaction required DNA synthesis and most likely reflects an idling reaction similar to that observed with other DNA polymerases containing 3'----5' exonuclease activity in which the polymerase first incorporates and then hydrolyzes a dNMP.  相似文献   

8.
The interaction between eukaryotic DNA topoisomerase I and a high affinity binding sequence was investigated. Quantitative footprint analysis demonstrated that the substrate preference results from strong specific binding of topoisomerase I to the sequence. The specificity was conferred by a tight noncovalent association between the enzyme and its target DNA, whereas the transient formation of a covalently bound enzyme.nicked DNA intermediate contributed insignificantly to the overall affinity. Topoisomerase I protected both strands over a 20-base pair region in which the cleavage site was centrally located. DNA modification interference analysis revealed a 16-base pair interference region on the scissile strand. Essential bases were confined to the 5' side of the cleavage site. The 6-base pair interference region observed on the complementary strand did not contain essential bases.  相似文献   

9.
Interactions between the isolated 8-kDa domain of the rat DNA polymerase beta and DNA have been studied, using the quantitative fluorescence titration technique. The obtained results show that the number of nucleotide residues occluded in the native 8-kDa domain complex with the ssDNA (the site size) is strongly affected by Mg2+ cations. In the absence of Mg2+, the domain occludes 13 +/- 0.7 nucleotide residues, while in the presence of Mg2+ the site size decreases to 9 +/- 0.6 nucleotides. The high affinity of the magnesium cation binding, as well as the dramatic changes in the monovalent salt effect on the protein-ssDNA interactions in the presence of Mg2+, indicates that the site size decrease results from the Mg2+ binding to the domain. The site size of the isolated domain-ssDNA complex is significantly larger than the 5 +/- 2 site size determined for the (pol beta)5 binding mode formed by an intact polymerase, indicating that the intact enzyme, but not the isolated domain, has the ability to use only part of the domain DNA-binding site in its interactions with the nucleic acid. Salt effect on the intrinsic interactions of the domain with the ssDNA indicates that a net release of m approximately 5 ions accompanies the complex formation. Independence of the number of ions released upon the type of anion in solution strongly suggests that the domain forms as many as seven ionic contacts with the ssDNA. Experiments with different ssDNA oligomers show that the affinity decreases gradually with the decreasing number of nucleotide residues in the oligomer. The data indicate a continuous, energetically homogeneous structure of the DNA-binding site of the domain, with crucial, nonspecific contacts between the protein and the DNA evenly distributed over the entire binding site. The DNA-binding site shows little base specificity. Moreover, the domain has an intrinsic affinity and site size of its complex with the dsDNA conformation, similar to the affinity and site size with the ssDNA. The significance of these results for the mechanistic role of the 8-kDa domain in the functioning of rat pol beta is discussed.  相似文献   

10.
Nuclear factor I is a cellular site-specific DNA-binding protein required for the efficient in vitro replication of adenovirus DNA. We have characterized human DNA sequences to which nuclear factor I binds. Three nuclear factor I binding sites (FIB sites), isolated from HeLa cell DNA, each contain the sequence TGG(N)6-7GCCAA. Comparison with other known and putative FIB sites suggests that this sequence is important for the binding of nuclear factor I. Nuclear factor I protects a 25- to 30-base-pair region surrounding this sequence from digestion by DNase I. Methylation protection studies suggest that nuclear factor I interacts with guanine residues within the TGG(N)6-7GCCAA consensus sequence. One binding site (FIB-2) contained a restriction endonuclease HaeIII cleavage site (GGCC) at the 5' end of the GCCAA motif. Digestion of FIB-2 with HaeIII abolished the binding of nuclear factor I. Southern blot analyses indicate that the cellular FIB sites described here are present within single-copy DNA in the HeLa cell genome.  相似文献   

11.
12.
We have determined the nucleotide sequence of the gene encoding adenovirus type 2 (Ad2) DNA binding protein (DBP). From the nucleotide sequence the complete amino acid sequence of Ad2 DBP has been deduced. A comparison of the amino acid sequences of Ad2 and Ad5 DBP, both 529 residues long, reveals that the C-terminal 354 residues of both sequences are identical. Within the N-terminal 175 amino acid residues Ad2 and Ad5 show nine differences. The site of mutation in Ad2 ND1ts23, a mutant with a temperature-sensitive DNA replication, was mapped at the nucleotide level. A single nucleotide alteration in the DBP gene, resulting in a leucine leads to phenylalanine substitution at position 282 in the amino acid sequence is responsible for the temperature-sensitive character of this mutant. Previously, we localized the mutation of another DBP mutant with a temperature-sensitive DNA replication (H5ts125) at position 413 in the amino acid sequence of the DBP molecule (Nucleic Acids Res. 9 (1981) 4439-4457). These mapping data are discussed in relation to the structure and function of the DBP molecule.  相似文献   

13.
14.
15.
Steroid receptor binding factor (RBF) was originally isolated from avian oviduct nuclear matrix. When bound to avian genomic DNA, RBF generates saturable high-affinity binding sites for the avian progesterone receptor (PR). Recent studies have shown that RBF binds to a 54 bp element in the 5'-flanking region of the progesterone-regulated avian c-myc gene, and nuclear matrix-like attachment sites flank the RBF element [Lauber et al. (1997) J. Biol. Chem. 272, 24657-24665]. In this paper, electrophoretic mobility shift assays (EMSAs) and S1 nuclease treatment are used to demonstrate that the RBF-maltose binding protei (MBP) fusion protein binds to single-stranded DNA of its element. Only the N-terminal domain of RBF binds the RBF DNA element as demonstrated by southwestern blot analyses, and by competition EMSAs between RBF-MBP and the N-terminal domain. Mass spectrometric analysis of the C-terminal domain of RBF demonstrates its potential to form noncovalent protein-protein interactions via a potential leucine-isoleucine zipperlike structure, suggesting a homo- and/or possible heterodimer structure in solution. These data support that the nuclear matrix binding site (acceptor site) for PR in the c-myc gene promoter is composed of RBF dimers bound to a specific single-stranded DNA element. The dimers of RBF are generated by C-terminal leucine zipper and the DNA binding occurs at the N-terminal parallel beta-sheet DNA binding motif. This complex is flanked by nuclear matrix attachment sites.  相似文献   

16.
17.
Nuclear factor I (NFI) binds tightly to DNA containing the consensus sequence TGG(N)6-7GCCAA. To study the role of the spacing between the TGG and GCCAA motifs, oligonucleotides homologous to the NFI binding site FIB-2 were synthesized and used for binding assays in vitro. The wild-type site (FIB-2.6) has a 6bp spacer region and binds tightly to NFI. When the size of this spacer was altered by +/- 1 or 2bp the binding to NFI was abolished. To further assess the role of the spacer and bases flanking the motifs, two oligonucleotide libraries were synthesized. Each member of these libraries had intact TGG and GCCAA motifs, but the sequence of the spacer and the 3bp next to each motif was degenerate. The library with a 6bp spacer bound to NFI to 40-50% the level of FIB-2.6. The library with a 7bp spacer bound to NFI to only 4% the level of FIB-2.6 and some of this binding was weaker than that of FIB-2.6 DNA. This novel use of degenerate DNA libraries has shown that: 1) the structural requirements for FIB sites with a 7bp spacer are more stringent than for sites with a 6bp spacer and 2) a limited number of DNA structural features can prevent the binding of NFI to sites with intact motifs and a 6bp spacer region.  相似文献   

18.
Nuclear factor I (NFI) is a site-specific DNA binding protein required for the replication of adenovirus type 2 DNA in vitro and in vivo. To study sequence requirements for the interaction of NFI with DNA, we have measured the binding of the protein to a variety of synthetic sites. Binding sites for NFI (FIB sites) were previously shown to contain a consensus sequence composed of 2 motifs, TGG (Motif 1), and GCCAA (Motif 2), separated by a 6 or 7bp spacer region. To assess conserved sequences in the spacer region and flanking sequences which affect NFI binding, we have isolated clones from oligonucleotide libraries that contain the two motifs flanked by 3 degenerate nucleotides and separated by degenerate spacer regions of 6 or 7 nucleotides. With a 6bp spacer region, a strong bias exists for a C or A residue in the first position of the spacer. Sites with a 7bp spacer region contain a G and C or A residue at the first and second positions, respectively, of the spacer, but also possess conserved residues at other positions of the site.  相似文献   

19.
20.
Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq DNA pol/TBD is thermostable, PCR competent and able to copy repetitive deoxynucleotide sequences six to seven times more faithfully than Taq DNA polymerase and makes 2–3-fold fewer AT→GC transition mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号