首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is substantial genetic variation for drought adaption in pearl millet in terms of traits controlling plant water use. It is important to understand genomic regions responsible for these traits. Here, F7 recombinant inbred lines were used to identify quantitative trait loci (QTL) and allelic interactions for traits affecting plant water use, and their relevance is discussed for crop productivity in water‐limited environments. Four QTL contributed to increased transpiration rate under high vapour pressure deficit (VPD) conditions, all with alleles from drought‐sensitive parent ICMB 841. Of these four QTL, a major QTL (35.7%) was mapped on linkage group (LG) 6. The alleles for 863B at this QTL decreased transpiration rate and this QTL co‐mapped to a previously detected LG 6 QTL, with alleles from 863B for grain weight and panicle harvest index across severe terminal drought stress environments. This provided additional support for a link between water saving from a lower transpiration rate under high VPD and drought tolerance. 863B alleles in this same genomic region also increased shoot weight, leaf area and total transpiration under well‐watered conditions. One unexpected outcome was reduced transpiration under high VPD (15%) from the interaction of two alleles for high VPD transpiration (LG 6 (B), 40.7) and specific leaf mass and biomass (LG 7 (A), 35.3), (A, allele from ICMB 841, B, allele from 863B, marker position). The LG 6 QTL appears to combine alleles for growth potential, beneficial for non‐stress conditions, and for saving water under high evaporative demand, beneficial under stressful conditions. Mapping QTL for water‐use traits, and assessing their interactions offers considerable potential for improving pearl millet adaptation to specific stress conditions through physiology‐informed marker‐assisted selection.  相似文献   

2.
Advanced backcross QTL analysis was used to identify quantitative trait loci (QTL) for agronomic performance in a population of BC2F3:5 introgression lines created from the cross of a Colombian large red-seeded commercial cultivar, ICA Cerinza, and a wild common bean accession, G24404. A total of 157 lines were evaluated for phenological traits, plant architecture, seed weight, yield and yield components in replicated trials in three environments in Colombia and genotyped with microsatellite, SCAR, and phaseolin markers that were used to create a genetic map that covered all 11 linkage groups of the common bean genome with markers spaced at an average distance of every 10.4 cM. Segregation distortion was most significant in regions orthologous for a seed coat color locus (R-C) on linkage group b08 and two domestication syndrome genes, one on linkage group b01 at the determinacy (fin) locus and the other on linkage group b02 at the seed-shattering (st) locus. Composite interval mapping analysis identified a total of 41 significant QTL for the eight traits measured of which five for seed weight, two for days to flowering, and one for yield were consistent across two or more environments. QTL were located on every linkage group with b06 showing the greatest number of independent loci. A total of 13 QTL for plant height, yield and yield components along with a single QTL for seed size showed positive alleles from the wild parent while the remaining QTL showed positive alleles from the cultivated parent. Some QTL co-localized with regions that had previously been described to be important for these traits. Compensation was observed between greater pod and seed production and smaller seed size and may have resulted from QTL for these traits being linked or pleiotropic. Although wild beans have been used before to transfer biotic stress resistance traits, this study is the first to attempt to simultaneously obtain a higher yield potential from wild beans and to analyze this trait with single-copy markers. The wild accession was notable for being from a unique center of diversity and for contributing positive alleles for yield and other traits to the introgression lines showing the potential that advanced backcrossing has in common bean improvement.  相似文献   

3.
Improved Catharanthus roseus cultivars are required for high yields of vinblastine, vindoline and catharanthine and/or serpentine and ajmalicine, the pharmaceutical terpenoid indole alkaloids. An approach to derive them is to map QTL for terpenoid indole alkaloids yields, identify DNA markers tightly linked to the QTL and apply marker assisted selection. Towards the end, 197 recombinant inbred lines from a cross were grown over two seasons to characterize variability for seven biomass and 23 terpenoid indole alkaloids content-traits and yield-traits. The recombinant inbred lines were genotyped for 178 DNA markers which formed a framework genetic map of eight linkage groups (LG), spanning 1786.5 cM, with 10.0 cM average intermarker distance. Estimates of correlations between traits allowed selection of seven relatively more important traits for terpenoid indole alkaloids yields. QTL analysis was performed on them using single marker (regression) analysis, simple interval mapping and composite interval mapping procedures. A total of 20 QTL were detected on five of eight LG, 10 for five traits on LG1, five for four traits on LG2, three for one trait on LG3 and one each for different traits on LG three and four. QTL for the same or different traits were found clustered on three LG. Co-location of two QTL for biomass traits was in accord of correlation between them. The QTL were validated for use in marker assisted selection by the recombinant inbred line which transgressively expressed 16 traits contributory to the yield vinblastine, vindoline and catharanthine from leaves and roots that possessed favourable alleles of 13 relevant QTL.  相似文献   

4.
5.
A QTL affecting clinical mastitis and/or somatic cell score (SCS) has been reported previously on chromosome 9 from studies in 16 families from the Swedish Red and White (SRB), Finnish Ayrshire (FA) and Danish Red (DR) breeds. In order to refine the QTL location, 67 markers were genotyped over the whole chromosome in the 16 original families and 18 additional half-sib families. This enabled linkage disequilibrium information to be used in the analysis. Data were analysed by an approach that combines information from linkage and linkage disequilibrium, which allowed the QTL affecting clinical mastitis to be mapped to a small interval (<1 cM) between the markers BM4208 and INRA084 . This QTL showed a pleiotropic effect on SCS in the DR and SRB breeds. Haplotypes associated with variations in mastitis resistance were identified. The haplotypes were predictive in the general population and can be used in marker-assisted selection. Pleiotropic effects of the mastitis QTL were studied for three milk production traits and eight udder conformation traits. This QTL was also associated with yield traits in DR but not in FA or SRB. No QTL were found for udder conformation traits on chromosome 9.  相似文献   

6.
Genetic control of yield related stalk traits in sugarcane   总被引:1,自引:0,他引:1  
A major focus of sugarcane variety improvement programs is to increase sugar yield, which can be accomplished by either increasing the sugar content of the cane or by increasing cane yield, as the correlation between these traits is low. We used a cross between an Australian sugarcane variety Q165, and a Saccharum officinarum accession, IJ76-514, to dissect the inheritance of yield-related traits in the complex polyploid sugarcane. A population of 227 individuals was grown in a replicated field trial and evaluated over 3 years for stalk weight, stalk diameter, stalk number, stalk length and total biomass. Over 1,000 AFLP and SSR markers were scored across the population and used to identify quantitative trait loci (QTL). In total, 27 regions were found that were significant at the 5% threshold using permutation tests with at least one trait; individually, they explained from 4 to 10% of the phenotypic variation and up to 46% were consistent across years. With the inclusion of digeneic interactions, from 28 to 60% of the variation was explained for these traits. The 27 genomic regions were located on 22 linkage groups (LGs) in six of the eight homology groups (HGs) indicating that a number of alleles or quantitative trait alleles (QTA) at each QTL contribute to the trait; from one to three alleles had an effect on the traits for each QTL identified. Alleles of a candidate gene, TEOSINTE BRANCHED 1 (TB1), the major gene controlling branching in maize, were mapped in this population using either an SSR or SNP markers. Two alleles showed some association with stalk number, but unlike maize, TB1 is not a major gene controlling branching in sugarcane but only has a minor and variable effect.  相似文献   

7.
Genetic diversity of 70 Mediterranean lentil (Lens culinaris ssp. culinaris Medicus) landraces was assessed using simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). These landraces were also assessed for variation in root and shoot traits and drought tolerance as estimated by relative water content (RWC), water losing rate (WLR) and wilting score (WS). Genetic diversity and clear differentiation of Moroccan landraces from those from northern Mediterranean regions (Italy, Turkey and Greece) were found. High genetic variation in root and shoot traits and traits related to drought tolerance was also observed. No relationship was found between drought tolerance of landraces and their geographic origin. Landraces with higher dry root biomass, chlorophyll content and root–shoot ratio were drought tolerant as evidenced by higher RWC and lower WLR and wilting severity. Kruskal–Wallis non-parametric test (K-W) was used to find SSRs and AFLPs associated with RWC, WLR and WS. Regression analysis showed six SSR and AFLP alleles explaining the highest phenotypic variation of RWC, WLR and WS (ranging from 21 to 50 % for SSRs and from 14 to 33 % for AFLPs). Functional genetic diversity analysis showed relationships between drought response of landraces and linked SSR and AFLP alleles to RWC, WLR and WS according to K-W test using canonical discriminant analysis. Our results confirm the feasibility of using association mapping to find DNA markers associated with drought tolerance in larger numbers of lentil landraces.  相似文献   

8.
Photosynthesis is fundamental to biomass production, but sensitive to drought. To understand the genetics of leaf photosynthesis, especially under drought, upland rice cv. Haogelao, lowland rice cv. Shennong265, and 94 of their introgression lines (ILs) were studied at flowering and grain filling under drought and well-watered field conditions. Gas exchange and chlorophyll fluorescence measurements were conducted to evaluate eight photosynthetic traits. Since these traits are very sensitive to fluctuations in microclimate during measurements under field conditions, observations were adjusted for microclimatic differences through both a statistical covariant model and a physiological approach. Both approaches identified leaf-to-air vapour pressure difference as the variable influencing the traits most. Using the simple sequence repeat (SSR) linkage map for the IL population, 1-3 quantitative trait loci (QTLs) were detected per trait-stage-treatment combination, which explained between 7.0% and 30.4% of the phenotypic variance of each trait. The clustered QTLs near marker RM410 (the interval from 57.3?cM to 68.4?cM on chromosome 9) were consistent over both development stages and both drought and well-watered conditions. This QTL consistency was verified by a greenhouse experiment under a controlled environment. The alleles from the upland rice at this interval had positive effects on net photosynthetic rate, stomatal conductance, transpiration rate, quantum yield of photosystem II (PSII), and the maximum efficiency of light-adapted open PSII. However, the allele of another main QTL from upland rice was associated with increased drought sensitivity of photosynthesis. These results could potentially be used in breeding programmes through marker-assisted selection to improve drought tolerance and photosynthesis simultaneously.  相似文献   

9.
The objective of this study was to determine the relationship between the origin of marker alleles from the Rhode Island Red (RIR) and Green-legged Partrigenous (GlP) breeds and chosen egg production and quality traits in F(2) generation consisting of 10 full-sib families. Polymorphism analysis of 23 microsatellite markers within the mapping population (519 F(2)) was made. In parental generation 17 alleles were identified as specific for the GlP and 23 for the RIR. The least squares method was used to evaluate the significance of effects of genotype (GlP/GlP, RIR/RIR, GlP/RIR) on the analysed quantitative traits. Thirty traits of egg production and quality were measured during the laying period. It was shown that the effects of the genotype (GlP/GlP, RIR/RIR, GlP/RIR) at the loci on analysed traits of F(2) animals were diversified. Significant effects were found for 16 traits. These results confirm that the analysed microsatellite loci may be linked to the genes affecting egg production and quality traits. The loci examined and the experimental population constitutes a valuable material for QTL mapping (linkage analysis).  相似文献   

10.
A. Zhan  J. Hu  X. Hu  M. Hui  M. Wang  W. Peng  X. Huang  S. Wang  W. Lu  C. Sun  Z. Bao 《Animal genetics》2009,40(6):821-831
We constructed the microsatellite-based linkage maps using 318 markers typed in two F1 outbred families of Zhikong scallop ( Chlamys farreri ). The results showed an extremely high proportion (56.2%) of non-amplifying null alleles and a high ratio (30%) of segregation distortion. By aligning different individual-based linkage maps, 19 linkage groups were identified, which are consistent with the haploid chromosome number of Zhikong scallop. The integrated linkage map contains 154 markers covering 1561.8 cM with an average intermarker spacing of 12.3 cM and 77.0% of genome coverage. We found that the heterogeneity in recombination rate was not determined by sexes but by different individuals on 18 linkage regions. The phenotypic marker of general shell colour was placed on LG4, which was flanked by microsatellite markers CFLD064 and CFBD055 . Four size-related traits including shell length (SL), shell width (SW), shell height (SH) and gross weight (GW) were analysed to identify the putative quantitative trait loci (QTL). Under the half-sib model, using dam as common parent, three, two, two and one QTL affecting SL, SW, SH and GW exceeded the genome-wide thresholds respectively. While using sir as common parent, a larger number of QTL were detected for these four traits: four, five, three and two for SL, SW, SH and GW respectively. The single QTL explained 3.7–19.2% of the phenotypic variation. The linkage map and the QTL associated with economic traits will provide useful information for marker-assisted selection of Zhikong scallop.  相似文献   

11.
Phenotypic measurements of chicken egg character and production traits are restricted to mature females only. Marker assisted selection of immature chickens using quantitative trait loci (QTL) has the potential to accelerate the genetic improvement of these traits in the chicken population. The QTL for 12 traits (i.e. body weight (BW), six for egg character, three for egg shell colour and two for egg production) of chickens were identified. An F2 population comprising 265 female chickens obtained by crossing White Leghorn and Rhode Island Red breeds and genotyped for 123 microsatellite markers was used for detecting QTL. Ninety-six markers were mapped on 25 autosomal linkage groups, and 13 markers were mapped on one Z chromosomal linkage group. Eight previous unmapped markers were assigned to their respective chromosomes in this study. Significant QTL were detected for BW on chromosomes 4 and 27, egg weight on chromosome 4, the short length of egg on chromosome 4, and redness of egg shell colour (using the L*a*b* colour system) on chromosome 11. A significant QTL on the Z chromosome was linked with age at first egg. Significant QTL could account for 6-19% of the phenotypic variance in the F2 population.  相似文献   

12.
An F2 broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer.  相似文献   

13.
Quantitative trait loci (QTL) analysis of yield influencing traits was carried out in Brassica juncea (AABB) using a doubled haploid (DH) mapping population of 123 lines derived from a cross between Varuna (a line representing the Indian gene pool) and Heera (representing the east European gene pool) to identify potentially useful alleles from both the parents. The existing AFLP based map of B. juncea was further saturated with RFLP and SSR markers which led to the identification of the linkage groups belonging to the A (B. rapa) and B (B. nigra) genome components of B. juncea. For QTL dissection, the DH lines were evaluated at three different environments and phenotyped for 12 quantitative traits. A total of 65 QTL spread over 13 linkage groups (LG) were identified from the three environments. QTL analysis showed that the A genome has contributed more than the B genome to productivity (68% of the total QTL detected) suggesting a more prominent role of the A genome towards domestication of this crop. The east European line, Heera, carried favorable alleles for 42% of the detected QTL and the remaining 58% were in the Indian gene pool line, Varuna. We observed clustering of major QTL in a few linkage groups, particularly in J7 and J10 of the A genome, with QTL of different traits having agronomically antagonistic allelic effects co-mapping to the same genetic interval. QTL analysis also identified some well-separated QTL which could be readily transferred between the two pools. Based on the QTL analysis, we propose that improvement in yield could be achieved more readily by heterosis breeding rather than by pure line breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Sorghum (Sorghum bicolor (L.) Moench) is one of the most important crops in the semiarid regions of the world. One of the important biotic constraints to sorghum production in India is the shoot fly which attacks sorghum at the seedling stage. Identification of the genomic regions containing quantitative trait loci (QTLs) for resistance to shoot fly and the linked markers can facilitate sorghum improvement programmes through marker-assisted selection. A simple sequence repeat (SSR) marker- based skeleton linkage map of two linkage groups of sorghum was constructed in a population of 135 recombinant inbred lines (RIL) derived from a cross between IS18551 (resistant to shoot fly) and 296B (susceptible to shoot fly). A total of 14 SSR markers, seven each on linkage groups A and C were mapped. Using data of different shoot fly resistance component traits, one QTL which is common for glossiness, oviposition and dead hearts was detected following composite interval mapping (CIM) on linkage group A. The phenotypic variation explained by this QTL ranged from 3.8%–6.3%. Besides the QTL detected by CIM, two more QTLs were detected following multi-trait composite interval mapping (MCIM), one each on linkage groups A and C for the combinations of traits which were correlated with each other. Results of the present study are novel as we could find out the QTLs governing more than one trait (pleiotropic QTLs). The identification of pleiotropic QTLs will help in improvement of more than one trait at a time with the help of the same linked markers. For all the QTLs, the resistant parent IS18551 contributed resistant alleles.  相似文献   

15.
A better understanding of the genetics of complex traits, such as yield, may be achieved by using molecular tools. This study was conducted to estimate the number, genome location, effect and allele phase of QTLs determining agronomic traits in the two North American malting barley (Hordeum vulgare L.) quality variety standards. Using a doubled haploid population of 140 lines from the cross of two-rowed Harrington×six-rowed Morex, agronomic phenotypic data sets from nine environments, and a 107-marker linkage map, we performed QTL analyses using simple interval mapping and simplified composite interval mapping procedures. Thirty-five QTLs were associated, either across environments or in individual environments, with five grain and agronomic traits (yield, kernel plumpness, test weight, heading date, and plant height). Significant QTL×environment interaction was detected for all traits. These interactions resulted from both changes in the magnitude of response and changes in the sign of the allelic effect. QTLs for multiple traits were coincident. The vrs1 locus on chromosome 2 (2H), which determines inflorescence row type, was coincident with the largest-effect QTL determining four traits (yield, kernel plumpness, test weight, and plant height). QTL analyses were also conducted separately for each sub-population (six-rowed and two-rowed). Seven new QTLs were detected in the sub-populations. Positive transgressive segregants were found for all traits, but they were more prevalent in the six-rowed sub-population.QTL analysis should be useful for identifying candidate genes and introgressing favorable alleles between germplasm groups. Received: 18 August 2000 / Accepted: 15 December 2000  相似文献   

16.
Wheat productivity is commonly limited by a lack of water essential for growth. Carbon isotope discrimination (Delta), through its negative relationship with transpiration efficiency, has been used in selection of higher wheat yields in breeding for rainfed environments. The potential also exists for selection of increased Delta for improved adaptation to irrigated and high rainfall environments. Selection efficiency of Delta would be enhanced with a better understanding of its genetic control. Three wheat mapping populations (Cranbrook/Halberd, Sunco/Tasman and CD87/Katepwa) containing between 161 and 190 F(1)-derived, doubled-haploid progeny were phenotyped for Delta and agronomic traits in 3-5 well-watered environments. The range for Delta was large among progeny (c. 1.2-2.3 per thousand), contributing to moderate-to-high single environment (h (2) = 0.37-0.91) and line-mean (0.63-0.86) heritabilities. Transgressive segregation was large and genetic control complex with between 9 and 13 Delta quantitative trait loci (QTL) identified in each cross. The Delta QTL effects were commonly small, accounting for a modest 1-10% of the total additive genetic variance, while a number of chromosomal regions appeared in two or more populations (e.g. 1BL, 2BS, 3BS, 4AS, 4BS, 5AS, 7AS and 7BS). Some of the Delta genomic regions were associated with variation in heading date (e.g. 2DS, 4AS and 7AL) and/or plant height (e.g. 1BL, 4BS and 4DS) to confound genotypic associations between Delta and grain yield. As a group, high Delta progeny were significantly (P < 0.10-0.01) taller and flowered earlier but produced more biomass and grain yield in favorable environments. After removing the effect of height and heading date, strong genotypic correlations were observed for Delta and both yield and biomass across populations (r (g) = 0.29-0.57, P < 0.05) as might be expected for the favorable experimental conditions. Thus selection for Delta appears beneficial in increasing grain yield and biomass in favorable environments. However, care must be taken to avoid confounding genotypic differences in Delta with stature and development time when selecting for improved biomass and yield especially in environments experiencing terminal droughts. Polygenic control and small size of individual QTL for Delta may reduce the potential for QTL in marker-assisted selection for improved yield of wheat.  相似文献   

17.
Drought is the major abiotic constraint contributing to yield reduction in common bean (Phaseolus vulgaris L.) worldwide. An increasing scarcity of water in the future will make improving adaptation to drought stress a major objective of most crop breeding efforts. Drought avoidance by increased extraction of soil moisture from greater depth under drought conditions is an adaptive mechanism of common bean. A recombinant inbred line population of DOR364?×?BAT477 was evaluated for rooting pattern traits in soil cylinder tubes under soil drying (progressive water stress) and non-stress (well-watered with 80% of field capacity) treatments in a greenhouse. One of the parents, BAT 477, is a deep-rooting genotype while the other parent, DOR 364, is a commercial cultivar in Central America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for ten rooting pattern traits as well as five shoot traits of 48-day-old plants. A mixed model quantitative trait locus (QTL) mapping analysis was carried out using a genetic map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. Genotype estimates were calculated from best design and spatial effects model for each trait. A total of 15 putative QTL were identified for seven rooting pattern traits and four shoot traits. The QTL detected were scattered over five of the 11 linkage groups. The QTL detected for all the root traits except total root length and fine root length were main effect QTL and did not interact with the level of water supply. The total root length and fine root length QTL with significant QTL?×?environment interaction only differed in magnitude of effect, and interaction was of a non-crossover type. Other QTL for total root length, fine roots, thick roots, root volume and root biomass were co-localized and also explained relatively more genetic variance. This suggests that the QTL affecting root traits in common beans are based on constitutive expression of genes and that drought avoidance based on deep rooting, longer root length, thicker roots, increasing root length distribution with depth, root volume and root biomass can be used in molecular breeding. The positive alleles for most of the QTL detected in this study were derived from the paternal parent BAT477. The results from the present analyses highlighted the feasibility of marker-aided selection as an alternative to conventional labor-intensive, phenotypic screening of drought avoidance root traits.  相似文献   

18.
A multivariate QTL detection was carried out on fatness and carcass composition traits on porcine chromosome 7 (SSC7). Single-trait QTLs have already been detected in the SLA region, and multivariate approaches have been used to exploit the correlations between the traits to obtain more information on their pattern: almost 500 measurements were recorded for backfat thickness (BFT1, BFT2), backfat weight (BFW) and leaf fat weight (LFW) but only about half that number for intramuscular fat content (IMF), affecting the detection. First, groups of traits were selected using a backward selection procedure: traits were selected based on their contribution to the linear combination of traits discriminating the putative QTL haplotypes. Three groups of traits could be distinguished based on successive discriminant analyses: external fat (BFT1, BFT2), internal fat (LFW, IMF) and BFW. At least four regions were distinguished, preferentially affecting one or the other group, with the SLA region always influencing all the traits. Meishan alleles decreased all trait values except IMF, confirming an opportunity for marker-assisted selection to improve meat quality with maintenance of carcass composition based on Meishan alleles.  相似文献   

19.
Multiparental designs combined with dense genotyping of parents have been proposed as a way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, using methods combining linkage disequilibrium information with linkage analysis (LDLA). Two new nested association mapping designs adapted to European conditions were derived from the complementary dent and flint heterotic groups of maize (Zea mays L.). Ten biparental dent families (N = 841) and 11 biparental flint families (N = 811) were genotyped with 56,110 single nucleotide polymorphism markers and evaluated as test crosses with the central line of the reciprocal design for biomass yield, plant height, and precocity. Alleles at candidate QTL were defined as (i) parental alleles, (ii) haplotypic identity by descent, and (iii) single-marker groupings. Between five and 16 QTL were detected depending on the model, trait, and genetic group considered. In the flint design, a major QTL (R2 = 27%) with pleiotropic effects was detected on chromosome 10, whereas other QTL displayed milder effects (R2 < 10%). On average, the LDLA models detected more QTL but generally explained lower percentages of variance, consistent with the fact that most QTL display complex allelic series. Only 15% of the QTL were common to the two designs. A joint analysis of the two designs detected between 15 and 21 QTL for the five traits. Of these, between 27 for silking date and 41% for tasseling date were significant in both groups. Favorable allelic effects detected in both groups open perspectives for improving biomass production.  相似文献   

20.
A novel multitrait fine-mapping method is presented. The method is implemented by a model that treats QTL effects as random variables. The covariance matrix of allelic effects is proportional to the IBD matrix, where each element is the probability that a pair of alleles is identical by descent, given marker information and QTL position. These probabilities are calculated on the basis of similarities of marker haplotypes of individuals of the first generation of genotyped individuals, using "gene dropping" (linkage disequilibrium) and transmission of markers from genotyped parents to genotyped offspring (linkage). A small simulation study based on a granddaughter design was carried out to illustrate that the method provides accurate estimates of QTL position. Results from the simulation also indicate that it is possible to distinguish between a model postulating one pleiotropic QTL affecting two traits vs. one postulating two closely linked loci, each affecting one of the traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号