首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of two mitogen-activated protein kinases (MAPKs), wound-induced protein kinase (WIPK) and salicylic acid-induced protein kinase (SIPK), is one of the earliest responses that occur in tobacco plants that have been wounded, treated with pathogen-derived elicitors or challenged with avirulent pathogens. We isolated cDNAs for these MAPKs ( NbWIPK and NbSIPK) from Nicotiana benthamiana. The function of NbWIPK and NbSIPK in mediating the hypersensitive response (HR) triggered by infiltration with INF1 protein (the major elicitin secreted by Phytophthora infestans), and the defense response to an incompatible bacterial pathogen ( Pseudomonas cichorii), was investigated by employing virus-induced gene silencing (VIGS) to inhibit expression of the WIPK and SIPK genes in N. benthamiana. Silencing of WIPK or SIPK, or both genes simultaneously, resulted in reduced resistance to P. cichorii, but no change was observed in the timing or extent of HR development after treatment with INF1.Communicated by R. G. Herrmann  相似文献   

2.
The unfolded protein response (UPR) plays important roles in plant virus infection. Our previous study has proved that rice stripe virus (RSV) infection elicits host UPR. However, the mechanism on how the UPR is triggered upon RSV infection remains obscure. Here, we show that the bZIP17/28 branch of the UPR signalling pathway is activated upon RSV infection in Nicotiana benthamiana. We found that membrane-associated proteins NSvc2 and NSvc4 encoded by RSV are responsible for the activation of the bZIP17/28 branch. Ectopic expression of NSvc2 or NSvc4 in plant leaves induced the proteolytic processing of NbbZIP17/28 and up-regulated the expression of UPR-related genes. Silencing NbbZIP17/28 significantly inhibited RSV infection. We show that RSV can specifically elicit the UPR through the bZIP17/28 branch, thus promoting virus infection of N. benthamiana plants.  相似文献   

3.
The voltage-dependent anion channel (VDAC) is a major outer mitochondrial membrane protein. It is well documented that VDAC plays an important role in apoptosis, a kind of programmed cell death, in mammalian systems. However, little is known about the role of the plant counterpart during the process of plant-specific cell death such as pathogen-induced hypersensitive response. To address this issue, we isolated three VDAC full-length cDNAs (NtVDAC1–3) from Nicotiana tabacum. The deduced products, NtVDACs, share 78–85% identity and retain the conserved eukaryotic mitochondrial porin signature distal to their C-terminal regions. Mitochondrial localization of three NtVDACs in plant cells was confirmed via a green fluorescent protein fusion method. Then, we addressed the main issue concerning pathogenesis relation. The N. benthamiana orthologues of NtVDACs were upregulated by challenge with the non-host pathogen Pseudomonas cichorii, but not after challenge with the virulent pathogen P. syringae pv. tabaci. Both the pharmaceutical inhibition of VDAC and silencing of NbVDACs genes compromised the non-host resistance against P. cichorii, suggesting the involvement of VDACs in defense against non-host pathogen. Involvement of NbVDACs in Bax-mediated cell death was also verified using a similar approach. The nucleotide sequence reported in this paper has been submitted to DDBJ under the following accession numbers: NtVDAC1 (AB286176), NtVDAC2 (AB286177), and NtVDAC3 (AB286178). An erratum to this article can be found at  相似文献   

4.
The movement of plant viruses is a complex process that requires support by the virus-encoded movement protein and multiple host factors. The unfolded protein response (UPR) plays important roles in plant virus infection, while how UPR regulates viral infection remains to be elucidated. Here, we show that rice stripe virus (RSV) elicits the UPR in Nicotiana benthamiana. The RSV-induced UPR activates the host autophagy pathway by which the RSV-encoded movement protein, NSvc4, is targeted for autophagic degradation. As a counteract, we revealed that NSvc4 hijacks UPR-activated type-I J-domain proteins, NbMIP1s, to protect itself from autophagic degradation. Unexpectedly, we found NbMIP1 stabilizes NSvc4 in a non-canonical HSP70-independent manner. Silencing NbMIP1 family genes in N. benthamiana, delays RSV infection, while over-expressing NbMIP1.4b promotes viral cell-to-cell movement. Moreover, OsDjA5, the homologue of NbMIP1 family in rice, behaves in a similar manner toward facilitating RSV infection. This study exemplifies an arms race between RSV and the host plant, and reveals the dual roles of the UPR in RSV infection though fine-tuning the accumulation of viral movement protein.  相似文献   

5.
6.
7.
8.
Diverse pathogen effectors convergently target conserved components in plant immunity guarded by intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) and activate effector-triggered immunity (ETI), often causing cell death. Little is known of the differences underlying ETI in different plants triggered by the same effector. In this study, we demonstrated that effector RipAW triggers ETI on Nicotiana benthamiana and Nicotiana tabacum. Both the first 107 amino acids (N1-107) and RipAW E3-ligase activity are required but not sufficient for triggering ETI on Nbenthamiana. However, on Ntabacum, the N1-107 fragment is essential and sufficient for inducing cell death. The first 60 amino acids of the protein are not essential for RipAW-triggered cell death on either Nbenthamiana or N. tabacum. Furthermore, simultaneous mutation of both R75 and R78 disrupts RipAW-triggered ETI on Ntabacum, but not on Nbenthamiana. In addition, Ntabacum recognizes more RipAW orthologs than Nbenthamiana. These data showcase the commonalities and specificities of RipAW-activated ETI in two evolutionally related species, suggesting Nicotiana species have acquired different abilities to perceive RipAW and activate plant defences during plant–pathogen co-evolution.  相似文献   

9.
Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.  相似文献   

10.
11.
Enzyme promiscuity, a common property of many uridine diphosphate sugar‐dependent glycosyltransferases (UGTs) that convert small molecules, significantly hinders the identification of natural substrates and therefore the characterization of the physiological role of enzymes. In this paper we present a simple but effective strategy to identify endogenous substrates of plant UGTs using LC‐MS‐guided targeted glycoside analysis of transgenic plants. We successfully identified natural substrates of two promiscuous Nicotiana benthamiana UGTs (NbUGT73A24 and NbUGT73A25), orthologues of pathogen‐induced tobacco UGT (TOGT) from Nicotiana tabacum, which is involved in the hypersensitive reaction. While in N. tabacum, TOGT glucosylated scopoletin after treatment with salicylate, fungal elicitors and the tobacco mosaic virus, NbUGT73A24 and NbUGT73A25 produced glucosides of phytoalexin N‐feruloyl tyramine, which may strengthen cell walls to prevent the intrusion of pathogens, and flavonols after agroinfiltration of the corresponding genes in Nbenthamiana. Enzymatic glucosylation of fractions of a physiological aglycone library confirmed the biological substrates of UGTs. In addition, overexpression of both genes in Nbenthamiana produced clear lesions on the leaves and led to a significantly reduced content of pathogen‐induced plant metabolites such as phenylalanine and tryptophan. Our results revealed some additional biological functions of TOGT enzymes and indicated a multifunctional role of UGTs in plant resistance.  相似文献   

12.
Bacterial flagellin is known to stimulate host immune responses in mammals and plants. In Arabidopsis thaliana, the receptor kinase FLS2 mediates flagellin perception through physical interaction with a highly conserved epitope in the N-terminus of flagellin, represented by the peptide flg22 derived from Pseudomonas syringae. The peptide flg22 is highly active as an elicitor in many plant species. In contrast, a shortened version of the same epitope derived from Escherichia coli, flg15E coli, is highly active as an elicitor in tomato but not in A. thaliana or Nicotiana benthamiana. Here, we make use of these species-specific differences in flagellin perception abilities to identify LeFLS2 as the flagellin receptor in tomato. LeFLS2 is most closely related to AtFLS2, indicating that it may represent the flagellin receptor of tomato. Expression of the LeFLS2 gene in Arabidopsis did not result in accumulation of its corresponding gene product, as indicated by experiments with LeFLS2-GFP fusions. In contrast, expression of LeFLS2-GFP fusions in N. benthamiana, a species that, like tomato, belongs to the Solanaceae, was obviously functional. N. benthamiana plants transiently expressing a LeFLS2-GFP fusion acquired responsiveness to flg15E coli to which they are normally unresponsive. Thus, LeFLS2 encodes a functional, specific flagellin receptor, the first to be identified in a plant family other than the Brassicaceae. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
RNA silencing is a conserved mechanism found ubiquitously in eukaryotic organisms. It has been used to regulate gene expression and development. In addition, RNA silencing serves as an important mechanism in plants’ defense against invasive nucleic acids, such as viruses, transposons, and transgenes. As a counter-defense, most plants, and some animal viruses, encode RNA silencing suppressors to interfere at one or several points of the silencing pathway. In this study, we showed that Pns12 of RGDV (Rice gall dwarf virus) exhibits silencing suppressor activity on the reporter green fluorescent protein in transgenic Nicotiana benthamiana line 16c. Pns12 of RGDV suppressed local silencing induced by sense RNA but had no effect on that induced by dsRNA. Expression of Pns12 also enhanced Potato virus X pathogenicity in N. benthamiana. Collectively, these results suggested that RGDV Pns12 functions as a virus suppressor of RNA silencing, which might target an upstream step of dsRNA formation in the RNA silencing pathway. Furthermore, we showed that Pns12 is localized mainly in the nucleus of N. benthamiana leaf cells.  相似文献   

14.
Previously, we reported that mitochondria-associated hexokinases are active in controlling programmed cell death in plants (Plant Cell 18, 2341-2355). Here, we investigated their role under abiotic- and biotic-stress conditions. Expression ofNbHxk1, aNicotiana benthamiana hexokinase gene, was stimulated by treatment with salicylic acid or methyl viologen (MV), and was also up-regulated by pathogen infection. In response to MV-induced oxidative stress, NbHxk1-silenced plants exhibited increased susceptibility, while the HXK1— and HXK2-overexpressingArabidopsis plants had enhanced tolerance. Moreover, those overexpressing plants showed greater resistance to the necrotrophic fungal pathogenAlternaria brassicicola. HXK-over-expression also mildly protected plants against the bacterial pathogenPseudomonas syringae pv.tomato DC3000, a response that was accompanied by increased H2O2 production and elevatedPR1 gene expression. These results demonstrate that higher levels of hexokinase confer improved resistance to MV-induced oxidative stress and pathogen infection.  相似文献   

15.
We characterized the physiological functions of Nicotiana benthamiana Chloroplast Envelope Protein 1 (NbCEP1) in Nicotiana benthamiana. NbCEP1 contains a chloroplast transit peptide and a single transmembrane domain at the N terminus, and most of its protein coding region is comprised of 15 leucine-rich-repeats (LRRs). The NbCEP1 gene is expressed in both aerial and underground plant tissues, and is induced by light. A GFP fusion protein of full length NbCEP1 was targeted to the chloroplast envelope and co-localized with OEP7:RFP, a marker protein for the chloroplast envelope. A fusion protein consisting of GFP and the NbCEP1 transit peptide mainly localized in the chloroplast stroma. Reduction of NbCEP1 expression by virus-induced gene silencing resulted in a leaf yellowing phenotype without much affecting overall plant growth. At the cellular level, depletion of NbCEP1 severely influenced chloroplast development, reducing both the number and size of the chloroplasts. Interestingly, mitochondrial development was also impaired, possibly an indirect effect of chloroplast ablation. A deficiency in NbCEP1 activity decreased the chlorophyll and carotenoid levels. Our results suggest that NbCEP1 plays a critical function, possibly through protein-protein interactions mediated by its LRRs, in chloroplast development in N. benthamiana.  相似文献   

16.
Hao L  Goodwin PH  Hsiang T 《Plant cell reports》2007,26(10):1879-1888
Metacaspases are cysteine proteinases that have homology to caspases, which play a central role in signaling and executing programmed cell death in animals. A type II metacaspase cDNA, NbMCA1, was amplified from Nicotiana benthamiana infected with Colletotrichum destructivum. It showed a peak in expression at 72 h post-inoculation corresponding with the switch to necrotrophy by C. destructivum. Inoculation of N. benthamiana with an incompatible bacterium, Pseudomonas syringae pv. tomato, which should induce a non-host hypersensitive response (HR), did not result in an increase in NbMCA1 expression at the time of necrosis development at 20–24 h postinoculation. Virus-induced silencing of NbMCA1 resulted in three to four times more lesions due to C. destructivum compared with leaves inoculated with the PVX vector without the cloned metacaspase gene or inoculated with water only. However, virus-induced silencing of NbMCA1 did not affect the HR necrosis or population levels of P. syringae pv. tomato. Although this metacaspase gene does not appear to be involved in the programmed cell death of non-host HR resistance to P. syringae, it does affect the susceptibility of N. benthamiana to C. destructivum indicating a function in a basal defense response. Possible roles of NbMCA1could be in degrading virulence factors of the pathogen, processing pro-proteins involved in stress responses, eliminating damaged proteins created during stress, and/or degrading proteins to remobilize amino acids to fuel de novo synthesis of proteins involved in stress adaptations.  相似文献   

17.
In plants, the mitogen‐activated protein kinase (MAPK) cascades are the central signaling pathways of the complicated defense network triggered by the perception of pathogen‐associated molecular patterns to repel pathogens. The Arabidopsis thaliana MAPK phosphatase 1 (AtMKP1) negatively regulates the activation of MAPKs. Recently, the AtMKP1 homolog of Nicotiana benthamiana (NbMKP1) was found in association with the Bamboo mosaic virus (BaMV) replication complex. This study aimed to investigate the role of NbMKP1 in BaMV multiplication in N. benthamiana. Silencing of NbMKP1 increased accumulations of the BaMV‐encoded proteins and the viral genomic RNA, although the same condition reduced the infectivity of Pseudomonas syringae pv. tomato DC3000 in N. benthamiana. On the other hand, overexpression of NbMKP1 decreased the BaMV coat protein accumulation in a phosphatase activity‐dependent manner in protoplasts. NbMKP1 also negatively affected the in vitro RNA polymerase activity of the BaMV replication complex. Collectively, the activity of NbMKP1 seems to reduce BaMV multiplication, inconsistent with the negatively regulatory role of MKP1 in MAPK cascades in terms of warding off fungal and bacterial invasion. In addition, silencing of NbMKP1 increased the accumulation of Foxtail mosaic virus but decreased Potato virus X. The discrepant effects exerted by NbMKP1 on different pathogens foresee the difficulty to develop plants with broad‐spectrum resistance through genetically manipulating a single player in MAPK cascades.  相似文献   

18.
Many Gram‐negative plant pathogenic bacteria express effector proteins of the XopQ/HopQ1 family which are translocated into plant cells via the type III secretion system during infection. In Nicotiana benthamiana, recognition of XopQ/HopQ1 proteins induces an effector‐triggered immunity (ETI) reaction which is not associated with strong cell death but renders plants immune against Pseudomonas syringae and Xanthomonas campestris pv. vesicatoria strains. Additionally, XopQ suppresses cell death in N. benthamiana when transiently co‐expressed with cell death inducers. Here, we show that representative XopQ/HopQ1 proteins are recognized similarly, likely by a single resistance protein of the TIR‐NB‐LRR class. Extensive analysis of XopQ derivatives indicates the recognition of structural features. We performed Agrobacterium‐mediated protein expression experiments in wild‐type and EDS1‐deficient (eds1) N. benthamiana leaves, not recognizing XopQ/HopQ1. XopQ recognition limits multiplication of Agrobacterium and attenuates levels of transiently expressed proteins. Remarkably, XopQ fails to suppress cell death reactions induced by different effectors in eds1 plants. We conclude that XopQ‐mediated cell death suppression in N. benthamiana is due to the attenuation of Agrobacterium‐mediated protein expression rather than the cause of the genuine XopQ virulence activity. Thus, our study expands our understanding of XopQ recognition and function, and also challenges the commonly used co‐expression assays for elucidation of in planta effector activities, at least under conditions of ETI induction.  相似文献   

19.
Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects approximately 70 effector proteins into plant cells via the Hrp type III secretion system in an early stage of infection. To identify an as-yet-unidentified avirulence factor possessed by the Japanese tobacco-avirulent strain RS1000, we transiently expressed RS1000 effectors in Nicotiana benthamiana leaves and monitored their ability to induce effector-triggered immunity (ETI). The expression of RipB strongly induced the production of reactive oxygen species and the expressions of defence-related genes in N. benthamiana. The ripB mutant of RS1002, a nalixidic acid-resistant derivative of RS1000, caused wilting symptoms in N. benthamiana. A pathogenicity test using R. solanacearum mutants revealed that the two already known avirulence factors RipP1 and RipAA contribute in part to the avirulence of RS1002 in N. benthamiana. The Japanese tobacco-virulent strain BK1002 contains mutations in ripB and expresses a C-terminal-truncated RipB that lost the ability to induce ETI in N. benthamiana, indicating a fine-tuning of the pathogen effector repertoire to evade plant recognition. RipB shares homology with Xanthomonas XopQ, which is recognized by the resistance protein Roq1. The RipB-induced resistance against R. solanacearum was abolished in Roq1-silenced plants. These findings indicate that RipB acts as a major avirulence factor in N. benthamiana and that Roq1 is involved in the recognition of RipB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号