首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A second type I topoisomerase was purified from the extremely thermophilic archaebacterium Desulfurococcus amylolyticus. In contrast to the previously described reverse gyrase from this organism, the novel enzyme designated as Dam topoisomerase III is an ATP-independent relaxing topoisomerase. It is a monomer with Mr 108,000, as determined by electrophoresis under denaturing conditions and by size exclusion chromatography. Dam topoisomerase III, like other bacterial type I topoisomerases, absolutely requires Mg2+ for activity and is specific for single-stranded DNA. At 60-80 degrees C, it relaxes negatively but not positively supercoiled DNA and is inhibited by single-stranded M13 DNA. At 95 degrees C, the enzyme unwinds both positively and negatively supercoiled substrates and produces extensively unwound form I* and I** DNA. The peculiarities of DNA topoisomerization at high temperatures are discussed.  相似文献   

2.
ATP-dependent type I topoisomerases from extremely thermophilic archaebacteria--reverse gyrases--drive positive supercoiling of DNA. We showed that reverse gyrase from Desulfurococcus amylolyticus breaks the DNA at specific sites and covalently binds to the 5' end. In 30 out of 31 sites located in pBR322 DNA fragments, cleavage occurs at the sequence 5'---CNNN/---(N is any base). The same rule was previously shown to hold for single-stranded DNA breakage by eubacterial topoisomerases I. The relative cleavage frequencies at different sites depend on Mg2+ and temperature. We discuss the possible physiological and mechanistic role of the above specificity of the bacterial topoisomerases I.  相似文献   

3.
The presence of reverse gyrase, an unusual ATP-dependent type I topoisomerase first isolated from thermophilic archaebacteria, has been detected in four strains of Thermotogales, an order of extremely thermophilic eubacteria. This result suggests that reverse gyrase plays a key role in high-temperature-living organisms, independently of the evolutionary kingdom to which they belong.  相似文献   

4.
Stoichiometric amounts of pure reverse gyrase, a type I topoisomerase from the archaebacterium Sulfolobus acidocaldarius were incubated at 75 degrees C with circular DNA containing a single-chain scission. After covalent closure by a thermophilic ligase and removal of bound protein molecules, negatively supercoiled DNA was produced. This finding, obtained in the absence of ATP, contrasts with the ATP-dependent positive supercoiling catalyzed by reverse gyrase and is interpreted as the result of enzyme binding to DNA at high temperature. Another consequence of reverse gyrase stoichiometric binding to DNA is the formation of a cleavable complex which results in the production of single-strand breaks in the presence of detergent. Like eubacterial type I topoisomerase (protein omega), reverse gyrase is tightly attached to the 5' termini of the cleaved DNA. In the light of these results, a comparison is tentatively made between reverse gyrase and the eubacterial type I (omega) and type II (gyrase) topoisomerases.  相似文献   

5.
Control of DNA topology is critical in thermophilic organisms in which heightened ambient temperatures threaten the stability of the double helix. An important role in this control is played by topoisomerase I, a member of the type IA family of topoisomerases. We investigated the binding and activity of this topoisomerase from the hyperthermophilic bacterium Thermotoga maritima on duplex DNA using single molecule techniques, presenting it with various substrates such as (+) plectonemes, (-) plectonemes, and denaturation bubbles. We found the topoisomerase inactive on both types of plectonemes, but active on denaturation bubbles produced at increased stretching forces in underwound DNA. The relaxation rate depended sensitively on the applied force and the protein concentration. These observations could be understood in terms of a preference of the topoisomerase for single-stranded DNA over double-stranded DNA and allowed for a better understanding of activity of the topoisomerase in bulk experiments on circular plasmids. Binding experiments on a single duplex molecule using a mutant unable to perform cleavage confirmed this interpretation and suggested that T.maritima topoisomerase I behaves like an SSB by lowering the denaturation threshold of underwound DNA. Finally, experiments with a unique single-stranded DNA showed that both ends of the cleaved DNA are tightly maintained by the enzyme, supporting an enzyme-bridged mechanism for this topoisomerase.  相似文献   

6.
Topoisomerases are essential ubiquitous enzymes, falling into two distinct classes. A number of eubacteria including Escherichia coli, typically contain four topoisomerases, two type I topoisomerases and two type II topoisomerases viz. DNA gyrase and topoisomerase IV. In contrast several other bacterial genomes including mycobacteria, encode for one type I topoisomerase and a DNA gyrase. Here we describe a new type II topoisomerase from Mycobacterium smegmatis which is different from DNA gyrase or topoisomerase IV in its characteristics and origin. The topoisomerase is distinct with respect to domain organization, properties and drug sensitivity. The enzyme catalyses relaxation of negatively supercoiled DNA in an ATP-dependent manner and also introduces positive supercoils to both relaxed and negatively supercoiled substrates. The genes for this additional topoisomerase are not found in other sequenced mycobacterial genomes and may represent a distant lineage.  相似文献   

7.
Studies on DNA polymerases and topoisomerases in archaebacteria   总被引:1,自引:0,他引:1  
We have isolated DNA polymerases and topoisomerases from two thermoacidophilic archaebacteria: Sulfolobus acidocaldarius and Thermoplasma acidophilum. The DNA polymerases are composed of a single polypeptide with molecular masses of 100 and 85 kDa, respectively. Antibodies against Sulfolobus DNA polymerase did not cross react with Thermoplasma DNA polymerase. Whereas the major DNA topoisomerase activity in S. acidocaldarius is an ATP-dependent type I DNA topoisomerase with a reverse gyrase activity, the major DNA topoisomerase activity in T. acidophilum is a ATP-independent relaxing activity. Both enzymes resemble more the eubacterial than the eukaryotic type I DNA topoisomerase. We have found that small plasmids from halobacteria are negatively supercoiled and that DNA topoisomerase II inhibitors modify their topology. This suggests the existence of an archaebacterial type II DNA topoisomerase related to its eubacterial and eukaryotic counterparts. As in eubacteria, novobiocin induces positive supercoiling of halobacterial plasmids, indicating the absence of a eukaryotic-like type I DNA topoisomerase that relaxes positive superturns.  相似文献   

8.
DNA topoisomerases are a family of enzymes altering the topology of DNA by concerted breakage and rejoining of the phosphodiester backbone of DNA. Bacterial and archeal type IA topoisomerases, including topoisomerase I, topoisomerase III, and reverse gyrase, are crucial in regulation of DNA supercoiling and maintenance of genetic stability. The crystal structure of full length topoisomerase I from Thermotoga maritima was determined at 1.7A resolution and represents an intact and fully active bacterial topoisomerase I. It reveals the torus-like structure of the conserved transesterification core domain comprising domains I-IV and a tightly associated C-terminal zinc ribbon domain (domain V) packing against domain IV of the core domain. The previously established zinc-independence of the functional activity of T.maritima topoisomerase I is further supported by its crystal structure as no zinc ion is bound to domain V. However, the structural integrity is preserved by the formation of two disulfide bridges between the four Zn-binding cysteine residues. A functional role of domain V in DNA binding and recognition is suggested and discussed in the light of the structure and previous biochemical findings. In addition, implications for bacterial topoisomerases I are provided.  相似文献   

9.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

10.
11.
12.
Reverse gyrases are atypical topoisomerases present in hyperthermophiles and are able to positively supercoil a circular DNA. Despite a number of studies, the mechanism by which they perform this peculiar activity is still unclear. Sequence data suggested that reverse gyrases are composed of two putative domains, a helicase-like and a topoisomerase I, usually in a single polypeptide. Based on these predictions, we have separately expressed the putative domains and the full-length polypeptide of Sulfolobus acidocaldarius reverse gyrase as recombinant proteins in Escherichia coli. We show the following. (i) The full-length recombinant enzyme sustains ATP-dependent positive supercoiling as efficiently as the wild type reverse gyrase. (ii) The topoisomerase domain exhibits a DNA relaxation activity by itself, although relatively low. (iii) We failed to detect helicase activity for both the N-terminal domain and the full-length reverse gyrase. (iv) Simple mixing of the two domains reconstitutes positive supercoiling activity at 75 degrees C. The cooperation between the domains seems specific, as the topoisomerase domain cannot be replaced by another thermophilic topoisomerase I, and the helicase-like cannot be replaced by a true helicase. (v) The helicase-like domain is not capable of promoting stoichiometric DNA unwinding by itself; like the supercoiling activity, unwinding requires the cooperation of both domains, either separately expressed or in a single polypeptide. However, unwinding occurs in the absence of ATP and DNA cleavage, indicating a structural effect upon binding to DNA. These results suggest that the N-terminal domain does not directly unwind DNA but acts more likely by driving ATP-dependent conformational changes within the whole enzyme, reminiscent of a protein motor.  相似文献   

13.
We have identified strong topoisomerase sites (STS) for Mycobacteruim smegmatis topoisomerase I in double-stranded DNA context using electrophoretic mobility shift assay of enzyme-DNA covalent complexes. Mg2+, an essential component for DNA relaxation activity of the enzyme, is not required for binding to DNA. The enzyme makes single-stranded nicks, with transient covalent interaction at the 5'-end of the broken DNA strand, a characteristic akin to prokaryotic topoisomerases. More importantly, the enzyme binds to duplex DNA having a preferred site with high affinity, a property similar to the eukaryotic type I topoisomerases. The preferred cleavage site is mapped on a 65 bp duplex DNA and found to be CG/TCTT. Thus, the enzyme resembles other prokaryotic type I topoisomerases in mechanistics of the reaction, but is similar to eukaryotic enzymes in DNA recognition properties.  相似文献   

14.
Reverse gyrases are topoisomerases that introduce positive supercoils into DNA in an ATP-dependent reaction. They consist of a helicase domain and a topoisomerase domain that closely cooperate in catalysis. The mechanism of the functional cooperation of these domains has remained elusive. Recent studies have shown that the helicase domain is a nucleotide-regulated conformational switch that alternates between an open conformation with a low affinity for double-stranded DNA, and a closed state with a high double-stranded DNA affinity. The conformational cycle leads to transient separation of DNA duplexes by the helicase domain. Reverse gyrase-specific insertions in the helicase module are involved in binding to single-stranded DNA regions, DNA unwinding and supercoiling. Biochemical and structural data suggest that DNA processing by reverse gyrase is not based on sequential action of the helicase and topoisomerase domains, but rather the result of an intricate cooperation of both domains at all stages of the reaction. This review summarizes the recent advances of our understanding of the reverse gyrase mechanism. We put forward and discuss a refined, yet simple model in which reverse gyrase directs strand passage toward increasing linking numbers and positive supercoiling by controlling the conformation of a bound DNA bubble.  相似文献   

15.
Several plasmid DNAs have been isolated from mesophilic and thermophilic archaebacteria. Their superhelical densities were estimated at their host strain's optimal growth temperature, and in some representative strains, the presence of reverse gyrase activity (positive DNA supercoiling) was investigated. We show here that these plasmids can be grouped in two clusters with respect to their topological state. The group I plasmids have a highly negatively supercoiled DNA and belong to the mesophilic archaebacteria and all types of eubacteria. The group II plasmids have DNA which is close to the relaxed state and belong exclusively to the thermophilic archaebacteria. All archaebacteria containing a relaxed plasmid, with the exception of the moderately thermophilic methanogen Methanobacterium thermoautotrophicum Marburg, also exhibit reverse gyrase activity. These findings show that extrachromosomal DNAs with very different topological states coexist in the archaebacterial domain.  相似文献   

16.
Type I DNA topoisomerases from mouse ascites cell nuclei and from rat liver cell nuclei act on denatured viral closed circular PM2 DNA to produce molecules with a highly contracted structure as well as fully duplex non-supercoiled covalently closed circular molecules. Highly contracted DNA molecules contain a novel type of topological linkage in which a strand in one region of the double-stranded molecule passes between the strands in another region of the circular molecule one or more times. Since it is also found that the action of the topoisomerase promotes renaturation of complementary strands in denatured closed circular DNA, it is suggested that formation of contracted DNA structures proceeds through renatured, duplex intermediates with highly negative superhelix densities that contain small single-stranded regions.  相似文献   

17.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

18.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

19.
Reverse gyrase is a unique DNA topoisomerase that catalyzes the introduction of positive supercoils into DNA in an ATP-dependent reaction. It consists of a helicase domain that functionally cooperates with a topoisomerase domain. Different models for the catalytic mechanism of reverse gyrase that predict a central role of the helicase domain have been put forward. The helicase domain acts as a nucleotide-dependent conformational switch that alternates between open and closed states with different affinities for single- and double-stranded DNA. It has been suggested that the helicase domain can unwind double-stranded regions, but helicase activity has not been demonstrated as yet. Here, we show that the isolated helicase domain and full-length reverse gyrase can transiently unwind double-stranded regions in an ATP-dependent reaction. The latch region of reverse gyrase, an insertion into the helicase domain, is required for DNA supercoiling. Strikingly, the helicase domain lacking the latch cannot unwind DNA, linking unwinding to DNA supercoiling. The unwinding activity may provide and stabilize the single-stranded regions required for strand passage by the topoisomerase domain, either de novo or by expanding already existing unpaired regions that may form at high temperatures.  相似文献   

20.
The twisted 'life' of DNA in the cell: bacterial topoisomerases   总被引:11,自引:2,他引:9  
DNA topoisomerases are essential to the cell for the regulation of DNA supercoiling levels and for chromosome decatenation. The proposed mechanisms for these reactions are essentially the same, except that a change in supercoiling is due to an intramolecular event, while decatenation requires an intermolecular event. The characterized bacterial topoisomerases appear capable of both types of reaction in vitro. Four DNA topoisomerases have been identified in Escherichia coli. Topoisomerase I, gyrase, and topoisomerase IV normally appear to have distinct essential functions within the cell, Gyrase and topoisomerase I are responsible for the regulation of DNA supercoiling. Both gyrase and topoisomerase IV are necessary for chromosomal decatenation. Multiple topoisomerases with distinct functions may give the cell more precise control over DNA topology by allowing tighter regulation of the principal enzymatic activities of these different proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号