首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
海洋管藻目绿藻刺松藻光系统Ⅰ复合物的分离   总被引:3,自引:0,他引:3  
采用Triton X-100蔗糖密度梯度离心法,从管藻目绿藻刺松藻中分离到三种不同形式的光系统Ⅰ(PSⅠ)复合物.区带Ⅲ富含PSⅠ核心复合物(CCⅠ),叶绿素(Chl)a/b>20,在温和的聚丙烯酰胺凝胶电泳(PAGE)中只显示一条PSⅠ中心复合物CPⅠ条带.区带Ⅳ和Ⅴ在436和674 nm、467和650 nm以及540 nm的吸收表明,含有Chl a、b及管藻黄素和管藻素,Chl a/b比值分别为3.23和2.4.经PAGE检测,有CPⅠ和CPⅠa两种PSⅠ色素蛋白复合物带,因此区带Ⅳ和Ⅴ是由CCⅠ和含量不等的捕光复合物LHCⅠ构成的PSⅠ颗粒.区带Ⅲ只有66和56 ku两种核心多肽;区带Ⅳ和Ⅴ除了66、56 ku多肽以外,还有4种分子质量为25,26,26.2和27.5 ku的LHCⅠ多肽.室温荧光光谱显示,分离物中的各种光合色素之间保持着良好的能量传递关系,由Chl b及管藻黄素和管藻素吸收的能量都可以传递给Chl a.  相似文献   

2.
用不连续梯度蔗糖密度超离心,从经Triton X-100增溶的褐藻裙带菜类囊体膜中分离到3种色素蛋白复合物条带,分别是捕光复合物、具有光氧化活性的PSⅡ复合物颗粒(区带Ⅱ)以及PSⅠ(区带Ⅲ)。PSⅡ颗粒经毛地黄皂苷增溶后,再次超离心分离得到3条PSⅡ的亚复合物条带。吸收和荧光激发谱显示其中的区带Ⅱ-1为墨角藻黄素-Chl a/c-蛋白复合物,区带Ⅱ-2为Chl a/c-蛋白复合物,两者都只含20kDa多肽;而鲜绿色的区带Ⅱ-3为不含捕光复合物的活性PSⅡ核心。  相似文献   

3.
褐藻裙带菜色素蛋白复合物的性质*   总被引:1,自引:0,他引:1  
用去污剂DMG增溶褐藻裙带菜(Undaria pinnatifida)的类囊体膜,通过PAGE分离色素-蛋白复合物并分析其性质,结果表明:CPⅠa和CPⅠ都含有66kDa的多肽,低温荧光发射光谱中有715nm的长波荧光峰,激发光谱测定结果表明CPⅠa是含有墨角藻黄素的叶绿素a/c-蛋白复合物,CPⅠ是只含有叶绿素a的色素-蛋白复合物。CPa含有51、37、34和20kDa四种多肽,低温荧光发射峰位于683nm,激发光谱表明它含有叶绿素a、c和少量墨角藻黄素,是裙带菜的PSⅠ复合物。其余5条为捕光色素-蛋白复合物,它们都是由20kDa的多肽组成,其中LHC1和LHC3有相似的光谱特性,是墨角藻黄素-叶绿素a/c-蛋白复合物,LHC2、LHC4和LHC5的光谱特性相似,是叶绿素a/c-蛋白复合物。  相似文献   

4.
管藻目绿藻刺松藻LHCII复合物的分离   总被引:1,自引:0,他引:1  
采用TritoX-100增溶刺松藻类囊体膜,经初离心,蔗糖密度梯度离心和Mg^2 聚集作用后再离心,纯化到一种只含有分子质量为28000u脱辅基蛋白的LHCⅡ复合物,证实此种多肽为同时结合有Chla、Chlb和管藻黄素及管藻素的色素蛋白复合物,Chla/b=0.91。吸收和荧光光谱显示分离物中各种色素之间保持着良好的能量传递关系。其中管藻黄素及管藻素吸收的光能可直接传递给Chla,而无需Chlb作为中介。  相似文献   

5.
管藻目绿藻刺松藻LHCII复合物的分离   总被引:1,自引:0,他引:1  
采用TritonX 10 0增溶刺松藻类囊体膜 ,经初离心、蔗糖密度梯度离心和Mg2 聚集作用后再离心 ,纯化到一种只含有分子质量为 2 80 0 0u脱辅基蛋白的LHCII复合物。证实此种多肽为同时结合有Chla、Chlb和管藻黄素及管藻素的色素蛋白复合物 ,Chla/b =0 .91。吸收和荧光光谱显示分离物中各种色素之间保持着良好的能量传递关系 ,其中管藻黄素及管藻素吸收的光能可直接传递给Chla ,而无需Chlb作为中介  相似文献   

6.
用不连续梯度蔗糖密度超离心,从经TritonX-100增溶的褐藻裙带菜类囊体膜中分离到3种色素蛋白复合物条带,分别是捕光复合物、具有光氧化活性的PSII复合物颗粒(区带II)以及PSI(区带III)。PSII颗粒经毛地黄皂苷增溶后,再次超离心分离得到3条PSII的亚复合物条带。吸收和荧光激发谱显示其中的区带II-1为墨角藻黄素-Chla/c-蛋白复合物,区带II-2为Chla/c-蛋白复合物,两者都只含20kDa多肽;而鲜绿色的区带II-3为不含捕光复合物的活性PSII核心。  相似文献   

7.
以褐藻裙带菜(Undaria pinnatifida)为实验材料,采用蔗糖密度梯度超速离心的方法,去污剂SDS为增溶剂(SDS:Chi=20:1,4℃增溶20 min),蔗糖密度梯度为60%、50%、40%、30%、20%、15%和10%,分离制备光系统Ⅰ(PSⅠ)复合物.结果表明,40%蔗糖层带所含色素蛋白复合物是PS I复合物.利用红藻作参照对比,光谱结果表明从裙带菜中得到的PSⅠ复合物没有730 nm的荧光峰.分析认为这是所有褐藻包括裙带菜PSⅠ复合物的荧光特异性.  相似文献   

8.
以褐藻裙带菜(Undaria pinnatifida)为实验材料,采用蔗糖密度梯度超速离心的方法,去污剂SDS为增溶剂(SDS:Chl=20:1,4℃增溶20 min),蔗糖密度梯度为60%、50%、40%、30%、20%、15%和10%,分离制备光系统Ⅰ(PSⅠ)复合物。结果表明, 40% 蔗糖层带所含色素蛋白复合物是PSⅠ复合物。利用红藻作参照对比,光谱结果表明从裙带菜中得到的PSⅠ复合物没有730 nm的荧光峰。分析认为这是所有褐藻包括裙带菜PSⅠ复合物的荧光特异性。  相似文献   

9.
裙带菜的类囊体膜经过去污剂癸基-N-甲基匍萄糖胺增溶,采用SDS-PAGE分离技术,在Tris-Gly和Tris-硼酸两种电泳系统中分离其色素-蛋白质复合物,并比较其复合物的光谱特性。结果表明:采用Tris-Gly电泳分离系统从裙带菜中分离到8种色食-蛋白质复合物,分别是CP Ia、CPI、LHC1、CPa、LHC2、LHC3、LHC4和LHC5。在Tris-硼酸电泳分离系统中共分离到5种色素-蛋白质复合物,分别是CPI、CPa、LHC1、LHC2、LHC3。吸收光谱和荧光光谱的测定结果表明,两种电泳系统中分离的相对应条带的光谱特性基本相近。  相似文献   

10.
低叶绿素b水稻突变体类囊体膜的比较蛋白质组学   总被引:8,自引:0,他引:8  
采用蓝绿温和胶凝胶电泳(blue-nativepolyacrylamidegel-electrophoresis,BN-PAGE),以及改进的第二向SDS-PAGE分离了水稻低叶绿素b突变体ZH249-Y和野生型ZH249-W类囊体膜蛋白复合物,系统比较了突变体和野生型各复合物亚基的表达差异.结果显示,第一向BN-PAGE分离了PSⅠ-LHCⅠ、LHCⅠ缺失的PSⅠ、ATP合成酶、细胞色素b6f、CP43缺失的PSⅡ及LHCⅡ六种复合物.上述各复合物经第二相SDS-Urea-PAGE分离后,利用胶内酶解,高效液相层析分离肽段,电喷雾串联质谱鉴定了复合物的亚基.结合免疫印迹研究,证明和野生型相比,突变体光系统Ⅱ捕光天线复合体的表达量适度下降,但光系统Ⅰ捕光天线破坏严重,同时光系统Ⅱ核心蛋白和ATP合成酶的表达量上升.研究结果对揭示低叶绿素b水稻突变体较高光化学效率和光稳定性的分子基础提供了线索,同时也表明,改进的BN/SDS-PAGE双向电泳不仅可以有效地分离膜蛋白复合物及亚基,也可以进行不同生理条件下,或野生型和突变体之间膜蛋白质组的比较研究.  相似文献   

11.
Evidences were provided in this paper that the relative distribution of chl-protein complexes of PSⅠ and PSⅡ could be regulated by Mg2+. addition of Mg2+ led to decrease in the amount of chl-protein complexes of PSⅠ and increase in the amount of chl-protein in complexes of PSⅡ. There was no effect of Mg2+ on the spectral property of LHCP1, but the addition of Mg2+ could change the spectral property of LHCP2 so that it became similar to that of the LHC-Ⅰ. CPIa2 was a complex of reaction centre of PSⅠ and LHC-I. LHC-I might be contacted specially with LHCP2 in chloroplast membranes. Addition of Mg2+ probably cansed the motion of LHC-I from PSⅠ to PSⅡ and became more closely connected with LHCP2. The relative amount of CPIa2, CPIa1, LHCP1 and LHCP2 in chloroplast membranes could be regulated by different light intensity. There were more CPIa2, LHCP1 and less LHCP2 in chloroplast membranes from the shade plant Malaxis monophyllos and sunflower grown under weak light, both of them lacked equally CPIa1. There were less CPIa2, LHCP1 and more LHCP2 in the sun plant spinach and sunflower grown under strong light, and they possessed equally CPIa1 chl-protein complexes. It is suggested that LHCP1 and LHCP2 are different light-harvesting Chl-protein complexes. The LHC-I and LHCP2 are mobile light-harvesting chl-protein complexes and shuttle back and forth between PSⅠ and PSⅡ They play an important role in the regulation and distribution of excitation energy between the two photosystems.  相似文献   

12.
The chlorophyll-protein complexes of the yellow alga Synura petersenii (Chrysophyceae) and the yellow-green alga Tribonema aequale (Xanthophyceae) were studied. The sodiumdodecylsulfate/sodiumdesoxycholate solubilized photosynthetic membranes of these species yielded three distinct pigment-protein complexes and a non-proteinuous zone of free pigments, when subjected to SDS polyacrylamid gel electrophoresis. The slowest migrating protein was identical to complex I (CP I), the P-700 chlorophyll a-protein, which possessed 60 chlorophyll a molecules per reaction center in Tribonema and 108 in Synura. The zone of intermediate mobility contained chlorophyll a and carotenoids. The absorption spectrum of this complex was very similar to the chlorophyll a-protein of photosystem II (CP a), which is known from green plants. The fastest migrating pigment protein zone was identified as a light-harvesting chlorophyll-protein complex. In Synura this protein was characterized by the content of chlorophyll c and of fucoxanthin. Therefore this complex will be named as LH Chl a/c-fucocanthin protein. In addition to the separation of the chlorophyll-protein complexes the cellular contents of P-700, cytochrome f (bound cytochrome) and cytochrome c-553 (soluble cytochrome) were measured. The stoichiometry of cytochrome f: cytochrome c-553:P-700 was found to be 1:4:2.4 in Tribonema and 1:6:3.4 in Synurá.Abbreviations CP a chlorophyll a-protein of photosystem II - CP I P-700 chlorophyll a-protein - FP free pigment - LH Chl a/c light-harvesting chlorophyll a/c-protein - PAGE polyacrylamidgelelectrophoresis - SDS Sodiumdodecylsulfate - SDOC sodium-desoxycholate  相似文献   

13.
properties, pigment compositions, Chl a/b ratios and apparent molecular weights of chlorophyll-protein complexes were compared between spinach and a marine green alga, Bryopsis corticulans. The results are as follows: 1. Ten chlorophyll-protein complexes were resolved from spinach thylakoid membranes solubilized by SDS in a final SDS/Chl weight ratio of 10:1, and subjected to SDS-PAGE with 11% resolution gel. CPIa 1–3 and CPI belonged to photosystem Ⅰ, and the rest to phorosystem Ⅱ. The maximum absorption of CPIa2, CPIas and CPI were all at 674nm, but that of CPIa1 at 670nm, and those of LHCII and D2 at 670 and 673nm, respectively. Chlorophyll ia PSⅡ was 63% of the total. In PSⅡ, most of chlorophyll was in LHCII which contained 86% of the chlorophyll in PSⅡ. In PSⅠ, chlorophyll in CPla was 72% of the total. Chlorophyll a was the main pigment in PSⅠ components which have Chl a/b ratio over 15. 2. Eight chlorophyll-protein complexes were isolated from B. corticulans with a SDS/Chi weight ratio of 8:1 and 8% resolution gel. The maximum absorption of CPIa, CPI, LHCII and D2 were respectively at 671nm, 673nm, 669nm and 664nm. PSⅡ contained 77% of the total chlorophyll. LHCII chlorophyll was 95% of the PSⅡ chlorophyll. CPI held 77% of PSⅠ chloro~ phyll. There was more chlorophyll b in Bryopsis complexes, especially in LHCI1 (Chl a/b< 0.8). The molecular weights of Bryopsis complexes were higher than those of the spinach complexes. Bryopsis LHCII contained siphoxanthin and siphothin, the marked pigments of Siphohales, as functional pigments. The above results revealed three points of difference between these two plants. Firstly, Chl a is the main pigment in spinach, whereas in Bryopsis the main pigments are Chl b and siphoxanthin. This is in accordance with the suggestion that plants may change their pigment composition to adapt light regime in the environment during evolution. Secondly, in Bryopsis, chlorophyll is concentrated in photosystem Ⅱ, but in spinach chlorophyll is shared evenly by two photosystems. Finally, CPI in Bryopsis contained the major part of chlorophyll in PSⅠ, yet in spinach CPIa is the superior.  相似文献   

14.
J. Barrett  Jan M. Anderson 《BBA》1980,590(3):309-323
Acrocarpia paniculata thylakoids were fragmented with Triton X-100 and the pigment-protein complexes so released were isolated by sucrose density gradient centrifugation. Three main chlorophyll-carotenoid-protein complexes with distinct pigment compositions were isolated.

1. (1) A P-700-chlorophyll a-protein complex, with a ratio of 1 P-700: 38 chlorophyll a: 4 ta-carotene molecules, had similar absorption and fluorescence characteristics to the chlorophyll-protein complex 1 isolated with Triton X-100 from higher plants, green algae and Ecklonia radiata.

2. (2) An orange-brown complex had a chlorophyll a : c2 : fucoxanthin molar ratio of 2 : 1 : 2. This complex had no chlorophyll c1 and contained most of the fucoxanthin present in the chloroplasts. This pigment complex is postulated to be the main light-harvesting complex of brown seaweeds.

3. (3) A green complex had a chlorophyll a : c1 : c2 : violaxanthin molar ratio of 8 : 1 : 1 : 1. This also is a light-harvesting complex.

The absorption and fluorescence spectral characteristics and other physical properties were consistent with the pigments of these three major complexes being bound to protein. Differential extraction of brown algal thylakoids with Triton X-100 showed that a chlorophyll c2-fucoxanthin-protein complex was a minor pigment complex of these thylakoids.  相似文献   


15.
Evidence is presented for the identification of the chlorophyll- protein complex CPa-1 (CP 47) as the reaction centre of photosystem II (PS II). We have developed a simple, rapid method using octyl glucoside solubilization to obtain preparations from spinach and barley that are highly enriched in PS II reaction centre activity (measured as the light-driven reduction of diphenylcarbazide by 2,6-dichlorophenolindophenol). These preparations contain only the two minor chlorophyll-protein complexes CPa-1 and CPa-2. During centrifugation on a sucrose density gradient, there is a partial separation of the two CPa complexes from each other, and a complete separation from other chlorophyll-protein complexes. The PS II activity comigrates with CPa-1 but not CPa-2, strongly suggesting that the former is the reaction centre complex of PS II. Reaction centre preparations are sensitive to the herbicide 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but only at much higher concentrations than those required to inhibit intact thylakoid membranes. A model of PS II incorporating our current knowledge of the chlorophyll-protein complexes is presented. It is proposed that CPa-2 and the chlorophyll a + b complex CP 29 may function as internal antenna complexes surrounding the reaction centre, with the addition of variable amounts of the major chlorophyll a + b light-harvesting complex.  相似文献   

16.
Laboratory for Plant Ecological Studies, Faculty of Science,Kyoto University, Kyoto 606, Japan P700-Chl a-protein complexes(CP1 and CP1*), Chl-protein complexes of PS II core (CPa-1 andCPa-2), light-harvesting Chi a/A-protein complexes (LHCPo andLHCPm) and CP29 of spinach thylakoids were resolved by SDS-polyacrylamide-gelelectrophoresis (PAGE) under non-denaturing conditions. TheLHCP oligomer purified by electrophoresis, had 29.5- and 27-kDapolypeptides. CP1, CP29 and two LHCPs (LHCP-1 and LHCP-2) ofspinach thylakoids were separated by a lithium dodecylsulfate(LDS) PAGE system with high resolution. The two LHCPs showedthe same absorption spectrum on the gel. When LHCP oligomerwas reelectrophoresed by this system it also gave LHCP-1, andLHCP-2. LHCP-1 had both 29.5- and 27- kDa polypeptides, butLHCP-2 had only 29.5 kDa polypeptide. Both polypeptides seemedto bind Chi. The heterogeneity of LHCP was also observed withbean thylakoids. (Received August 5, 1987; Accepted September 17, 1987)  相似文献   

17.
The chlorophyll a antenna of photosystems I and II were each isolated after detergent treatment by gel electrophoresis or sucrose gradient centrifugation from a b-less mutant of barley grown in daylight and from wildtype barley developed in intermittent light. We identified each fraction by both its electrophoretic position and PS I activity (P700 content) in the case of the mutant, and by both PS I and PS II activity (DCIP reduction from DPC) in the light-limited plants. The proportion of Chl a in each photosystem was estimated from the amount in each gel or sucrose gradient band, and from addition of the areas under the absorption spectra (650–710 nm) of each fraction to match the spectrum of the solubilized thylakoids. The latter method was possible because the spectrum (77 K) of each fraction was unique; in the mutant about 70% of chlorophyll is associated with PS I and 30% with PS II. In the light-limited plants, the reverse is true with nearly 70% associated with PS II. RESOL analyses of both absorption and fluorescence emission spectra of all isolated fractions indicated an abnormal arrangement of antenna chlorophyll molecules in the light-limited, developing membranes even though their reaction centers are fully functional.Abbreviations DCIP dichlorophenolindophenol - DOC deoxycholate - DPC diphenylcarbazide - DL daylight - ImL intermittent light - LHC light-harvesting Chl a/b protein complex - PAGE polyacrylamide gel electrophoresis DPB-CIW No. 778  相似文献   

18.
A fucoxanthin-chlorophyll a/c-protein complex has been isolated from the prymnesiophyte Pavlova gyrans. Thylakoid membranes were treated with the mild anionic detergent sodium taurodeoxycholate followed by sucrose density gradient centrifugation. The brown fraction produced by this procedure was treated with Triton X-100 followed by a second sucrose density gradient centrifugation. A brown fraction isolated from this gradient was shown to be a light-harvesting complex nearly identical to that which is present in the diatom Phaeodactylum tricornutum. The complexes from the two organisms have nearly identical absorption and flourescence spectra, both complexes contain fucoxanthin and two other carotenoids, both contain four polypeptides of similar molecular weights, and polypeptides from both complexes cross react with antibodies raised to polypeptides of the Phaeodactylum tricornutum complex. Results suggest a common evolutionary origin for these light-harvesting complexes, in apparent contrast to the great differences in cell structure between prymnesiophytes and diatoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号