首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium iodate damages retinal pigment epithelium specifically, but the reason for this specificity is not well understood. The work reported here describes an effect of sodium iodate on melanin, a major component of the retinal pigment epithelium. Sodium iodate increases the ability of melanin to convert glycine to glyoxylate. Almost ten times as much glyoxylate is formed when sodium iodate is present compared to the amount formed with melanin alone, although iodate alone does not convert glycine to glyoxylate. A chemical reaction between sodium iodate and melanin is suggested as a partial explanation of the specificity of iodate toxicity towards retinal pigment epithelium.  相似文献   

2.
Iodate poisoning is known to induce both a retinal degeneration which is restricted in a first stage to the pigment epithelium and a selective suppression of the c-wave ([5] to [10]). In the chicken we did not obtain such electrophysiological or morphological effects. In both acute (i.v. or i.m. injections, up 50 mg/kg) and chronic experiments (4 X 45 mg/kg daily) the photopic c-wave of the chicken appeared to be fairly insensitive to sodium iodate, except at high concentrations (greater than 100 mg/kg in a single injection) which proved to be highly cardiotoxic. The ultrastructure of the retinal pigment epithelium and of the photoreceptors appeared quite normal in retinas treated with the highest concentration of the drug. Sodium pentobarbital (Nembutal), ketamine (Ketalar) and ethyl-carbamate (Urethane) were used as general anesthetics. The c-wave appeared to be differentially sensitive to these drugs. The suppressant effect was strongest with Nembutal and lowest with Urethane. The selective sensitivity of the c-wave to general anesthetics may explain why it was repeatedly stated in the literature that c-waves did not exist in a number of cone dominated retinas.  相似文献   

3.
Summary In order to determine if there are biochemical changes in plasma-membrane oligosaccharides of regenerating retinal pigment epithelium, the binding of colloidal iron oxide at low pH and ferritin-conjugated wheat germ agglutinin — probes of sialic acid and N-acetylglucosamine on the cell surface — was examined electron-microscopically. An animal model of retinal pigment epithelium regeneration — rabbits with sodium iodate induced retinopathy — was used. In this model, large expanses of regenerating pigment epithelium are present for comparison with zones of spared pgiment epithelium in the same animals. In thin sections examined by transmission electron microscopy, ferritin-conjugated wheat germ agglutinin appeared to bind more intensely to the exposed plasma membrane of regenerating retinal pigment epithelium than to spared pigment epithelium, or that of normal rabbits. Morphometry verified this. Colloidal iron oxide intensely labelled the plasma membranes of regenerating, spared, and normal pigment epithelium, and was visibly reduced after exposure of tissue to neuraminidase. The observations indicate that the plasma membrane of regenerating retinal pigment epithelium bears sialic acid and N-acetylglucosamine residues as in normal retinal pigment epithelium. However, the amount of plasma membrane bearing exposed N-acetylglucosamine increases during regeneration.  相似文献   

4.
According to a recent hypothesis the melanin granules in the retinal pigment epithelium of mammals originate from photosensory membrane degradation. To test this hypothesis the retinal pigment epithelium of cattle was kept in tissue culture and exposed to gold-labelled rod outer segments. Gold granules were later detected inside phagosomes, melanosomes and mature melanin granules. Tyrosinase, the key enzyme in melanogenesis, was additionally localized inside phagosomes. These results indicate that in cultured retinal pigment epithelium the matrix of the melanosome can originate from phagosomes. therefore, the melanosome is a specialized lysosome.  相似文献   

5.
Chloroplasts, mitochondria, and peroxisomes from leaves were separated by isopycnic sucrose density gradient centrifugation. The peroxisomes converted glycolate-14C or glyoxylate-14C to glycine, and contained a glutamate: glyoxylate aminotransferase as indicated by an investigation of substrate specificity. The pH optimum for the aminotransferase was between 7.0 and 7.5, and the Km for l-glutamate was 3.6 mm and for glyoxylate, 4.4 mm. The reaction of glutamate plus glyoxylate was not reversible. The isolated peroxisomes did not convert glycine to glyoxylate nor glycine to serine.  相似文献   

6.
Permeability of regenerating and atrophic choriocapillaris in the rabbit   总被引:1,自引:0,他引:1  
G E Korte  S Cushin  N Delman 《Acta anatomica》1989,134(2):144-150
When rabbits receive intravenous injections of sodium iodate, large expanses of the retinal pigment epithelium are destroyed. The adjacent capillary bed, the choriocapillaris, atrophies in response to the loss of the pigment epithelium and then regenerates. This provides a model of the permeability of regenerating and atrophic choriocapillaris, which we studied using intravenously injected horseradish peroxidase and catalase. Regenerating capillaries were permeable to peroxidase but not catalase. The permeability to peroxidase was probably due to endothelial fenestrations, since catalase (which is larger than peroxidase and does not penetrate endothelial fenestrae) was retarded at interendothelial junctional complexes, indicating that they were intact. Atrophic choriocapillaries were impermeable to catalase but displayed a heterogeneous permeability to peroxidase. This was correlated with the presence or absence of fenestrae; capillary profiles lacking fenestrae retained peroxidase in their lumina, whereas if fenestrae were present the tracer penetrated into the pericapillary space. The observations indicate that: (1) the permeability of the regenerating choriocapillaris is qualitatively similar to the mature choriocapillaris, and (2) the atrophic choriocapillaris undergoes changes in permeability that are primarily correlated with the loss of endothelial fenestrae. The observations provide a functional correlate - change in permeability - for structural changes in choriocapillaris endothelium (thickening, loss of fenestrae) in response to destruction of the retinal pigment epithelium, which has been postulated to exert a trophic effect on these capillaries.  相似文献   

7.
8.
Sodium iodate (SI) is a widely used oxidant for generating retinal degeneration models by inducing the death of retinal pigment epithelium (RPE) cells. However, the mechanism of RPE cell death induced by SI remains unclear. In this study, we investigated the necrotic features of cultured human retinal pigment epithelium (ARPE-19) cells treated with SI and found that apoptosis or necroptosis was not the major death pathway. Instead, the death process was accompanied by significant elevation of intracellular labile iron level, ROS, and lipid peroxides which recapitulated the key features of ferroptosis. Ferroptosis inhibitors deferoxamine mesylate (DFO) and ferrostatin-1(Fer-1) partially prevented SI-induced cell death. Further studies revealed that SI treatment did not alter GPX4 (glutathione peroxidase 4) expression, but led to the depletion of reduced thiol groups, mainly intracellular GSH (reduced glutathione) and cysteine. The study on iron trafficking demonstrated that iron influx was not altered by SI treatment but iron efflux increased, indicating that the increase in labile iron was likely due to the release of sequestered iron. This hypothesis was verified by showing that SI directly promoted the release of labile iron from a cell-free lysate. We propose that SI depletes GSH, increases ROS, releases labile iron, and boosts lipid damage, which in turn results in ferroptosis in ARPE-19 cells.Subject terms: Disease model, Cell death  相似文献   

9.
This paper is a review of what is known about the turnover of melanin in iris, choroid, and retinal pigment epithelium (RPE) of the adult vertebrate eye. Differences in size and structure of choroideal and retinal pigment epithelial melanin granules are shown by electron micrographs. The classical stages of melanin synthesis, including the premelanosome, are shown in the RPE of adult hamsters that had been exposed to intense light. Degradation or synthesis of melanin also seem to occur in the melanocytes of the choroid in these animals. It is postulated that all three pigmented eye tissues (iris, RPE, and choroid) of adult vertebrates form melanin granules in vivo. However, nothing is known about the amount of this turnover.  相似文献   

10.
G E Korte  F Pua 《Acta anatomica》1988,131(3):200-206
The rabbit and rat choriocapillaris atrophies in response to experimental destruction of the retinal pigment epithelium by intravenous injection of sodium iodate. This provides a convenient model of capillary atrophy. We have observed that pericytes are spared during this process; the atrophy is due to loss of endothelium only. Extensive examination of thin sections obtained 1 day to 11 weeks after administration of iodate showed that pericytes retained their normal relationship to the remnant capillary basement membrane left behind as the endothelial tube atrophied. This was most conspicuously manifested in their retention of processes longitudinally disposed along the sleeves of remnant basement membrane. The processes retained bundles of actin filaments that had dense regions along them and inserted into subplasmalemmal densities at basement membrane attachment sites, i.e. they had the characteristics of stress fibers. The pericytes did not phagocytose the debris of endothelial necrosis, in spite of their known phagocytic abilities. Necrotic endothelial cells were eliminated by sloughing into the capillary lumen. The observations support the idea that the function of pericytes in the choriocapillaris, the major source of nutrition for the retinal photoreceptors, resides in their contractility, and that pericytes do not remove necrotic endothelium during capillary atrophy.  相似文献   

11.
Rats that receive intravenous injections of sodium iodate develop a retinopathy characterized by the partial loss of the retinal pigment epithelium (RPE). In thin sections examined by transmission electron microscopy the choriocapillaris atrophied adjacent to areas of RPE destruction. The endothelial cells thickened and lost their fenestrae and the lumen of the capillary was reduced. At sites where the RPE remained normal in appearance the choriocapillaris did not atrophy. Scanning electron microscopy of vascular casts of the choriocapillaris showed the coexistence of atrophic and normal choriocapillaris throughout the retina, presumably adjacent to sites where the RPE was destroyed or spared, respectively. Our observations support the concept that the RPE exerts some control over the structure and function of the choriocapillaris.  相似文献   

12.
In zebrafish (Danio rerio) pigmentation is initiated during embryogenesis and begins in the retinal epithelium and in the melanophores. The pigment cells develop rapidly, and within hours they constitute a prominent feature of the embryo. In order to improve signal detection by whole mount in situ hybridization, confocal microscopy, or expression of GFP, embryos may be treated with 1-phenyl 2-thiourea (PTU) during embryogenesis. PTU inhibits melanogenesis by blocking all tyrosinase-dependent steps in the melanin pathway but can be toxic at high concentrations. The embryos remain transparent as long as the PTU treatment is continued. However, PTU treatment must be initiated before the initial pigmentation because it does not remove already formed pigment. Here we provide a protocol for generating transparent zebrafish while avoiding the toxic and teratogenic effects of PTU treatment. Received December 4, 2000; accepted April 7, 2001.  相似文献   

13.
The pigment melanin has antioxidant properties that could theoretically reduce oxidative damage to the retinal pigment epithelium (RPE), perhaps protecting against retinal diseases with an oxidative stress component like age-related macular degeneration. To determine whether melanin confers cytoprotection on RPE cells, melanosomes or control particles were introduced by phagocytosis into the human cell line ARPE-19 and oxidative stress was induced chemically (H2O2 or tert-butyl hydroperoxide) or with visible light. Since the iron-binding capacity of melanin is important for its antioxidant function, experiments were performed to confirm that the melanosomes were not iron saturated. Cytotoxicity was assessed by measures of plasma or lysosomal membrane integrity, mitochondrial function, and cell-substrate reattachment. Oxidative stress protocols were critically evaluated to produce modest cytotoxicity, which might allow detection of a small cytoprotective effect as expected for melanosomes. Particle internalization alone had no effect on baseline metabolic activity or on major RPE antioxidants. Particles were tested in multiple oxidative stress experiments in which culture conditions known to affect stress-induced cytotoxicity, notably culture density, were varied. No testing condition or outcome measure revealed a consistent protective (or cytotoxic) effect of melanosomes, indicating that measures of lysosome stability or whole cell viability do not demonstrate an antioxidant role for RPE melanosomes. If the melanosome, an insoluble particle, performs a cytoprotective function within cells, its effects may be limited to the local environment of the organelle and undetectable by conventional methods.  相似文献   

14.
A flux chamber was utilized for in vitro studies of a membrane formed by the retinal pigment epithelium and choroid of the eye of the toad (Bufo arenarum and Bufo marinus). A transmembrane potential of 20 to 30 mv was found, the pigment epithelium surface positive with respect to the choroidal surface. Unidirectional fluxes of chloride, sodium, potassium, and calcium were determined in the absence of an electrochemical potential difference. A net transfer of chloride from pigment epithelium to choroid accounted for a major fraction of the mean short-circuit current. A small net flux of sodium from choroid to pigment epithelium was detected in Bufo marinus. In both species of toads, however, about one-third of the mean short-circuit current remained unaccounted for. Manometric determinations of bicarbonate suggested an uptake of this ion at the epithelial surface of the membrane but did not provide evidence of a relationship between this process and the short-circuit current.  相似文献   

15.
The uveitogenicity of melanin has been a controversial subject for a long time, presumably as a result of the use of ill-defined preparations in the experiments. We have developed procedures for the preparation of purified uveitogenic melanins from the retinal pigment epithelium and choroid that are free from pathogenic retinal photoreceptor proteins. The active melano-antigen is located at the surface of the melanin granules and is probably identical in both tissues. It retains its pathogenicity in hot polar detergent and during in vitro proteolysis, but it is inactivated by macrophage phagocytosis and hydrolysis in hot hydrochloric acid. Lewis rats immunized with microgram doses of bovine retinal pigment epithelial or choroidal melanin develop severe experimental autoimmune anterior uveitis (EAAU) about 10 days later. Retinitis and pinealitis are not observed. Skin melanin prepared in a similar way evokes EAAU as well, but it is only weakly pathogenic. EAAU cannot be transferred by serum, and its development can effectively be inhibited by antibodies to the inciting antigen and by cyclosporin. Vitamin E treatment of the animals causes a delay in its onset. The results indicate that cell-mediated immunity plays a dominant role in the pathogenesis of EAAU. This is the first time it has been shown that purified ocular and skin melanins are able to induce an autoimmune disease. The relevance of this finding for the study of melanin-related immunopathology in man is discussed.  相似文献   

16.
Pathological changes in retinas of diabetics include specific morphological, biochemical, and functional abnormalities. As biochemical manifestations of the disease, increased sorbitol and decreased myo-inositol were found in retinas of experimentally diabetic animals. Similar alterations in polyol metabolism have been associated in nerves of diabetics with a reduction of Na+-K+-ATPase activity. To determine whether this association extends to the retinas of diabetic animals, we applied quantitative histochemical techniques to measure ATPase activities and the amounts of sodium and potassium in samples from nine individual layers of cryostat sections of rabbit retina. ATPase activities were determined fluorimetrically, and the ions were measured by atomic absorption with a carbon rod atomizer. The activity of Na+-K+-ATPase was reduced in the retinal pigmented epithelium (retinal pigment epithelium) and in selected layers of the neural retina, and total sodium in the retinal pigment epithelium layer was elevated in diabetes. The retinal pigment epithelium forms the outer component of the blood-retinal barrier and partly determines the composition of the retinal interstitial fluid. Changes in retinal pigment epithelium biochemistry and function might alter the intraretinal environment, predisposing neural retina or retinal blood vessels to disease. The morphologically and functionally well defined retinal pigment epithelium may provide a useful model for studying the pathogenesis of diabetic complications.  相似文献   

17.
18.
Free amino acid levels and high affinity uptake of glutamate, aspartate γ-aminobutyrate, glycine and taurine were studied in retina and retinal pigment epithelium of streptozotocin diabetic rats. Results show that experimental diabetes produces a generalized fall in the content of free amino acids in both retina and retinal pigment epithelium. With regard to the high affinity uptake, in the two tissues of diabetic animals showed decreased aspartate uptake, enhanced taurine and γ-aminobutyrate uptake, whereas that of glycine and glutamate was unchanged. These results might suggest that diabetes causes alterations of specific amino acid transport systems and/or alterations of some cell populations.  相似文献   

19.
Oxalate synthesis in human hepatocytes is not well defined despite the clinical significance of its overproduction in diseases such as the primary hyperoxalurias. To further define these steps, the metabolism to oxalate of the oxalate precursors glycolate and glyoxylate and the possible pathways involved were examined in HepG2 cells. These cells were found to contain oxalate, glyoxylate, and glycolate as intracellular metabolites and to excrete oxalate and glycolate into the medium. Glycolate was taken up more effectively by cells than glyoxylate, but glyoxylate was more efficiently converted to oxalate. Oxalate was formed from exogenous glycolate only when cells were exposed to high concentrations. Peroxisomes in HepG2 cells, in contrast to those in human hepatocytes, were not involved in glycolate metabolism. Incubations with purified lactate dehydrogenase suggested that this enzyme was responsible for the metabolism of glycolate to oxalate in HepG2 cells. The formation of 14C-labeled glycine from 14C-labeled glycolate was observed only when cell membranes were permeabilized with Triton X-100. These results imply that peroxisome permeability to glycolate is restricted in these cells. Mitochondria, which produce glyoxylate from hydroxyproline metabolism, contained both alanine:glyoxylate aminotransferase (AGT)2 and glyoxylate reductase activities, which can convert glyoxylate to glycine and glycolate, respectively. Expression of AGT2 mRNA in HepG2 cells was confirmed by RT-PCR. These results indicate that HepG2 cells will be useful in clarifying the nonperoxisomal metabolism associated with oxalate synthesis in human hepatocytes. liver; peroxisomes; hepatocytes; hyperoxaluria; alanine:glyoxylate aminotransferase; glyoxylate reductase  相似文献   

20.
Patterning the optic neuroepithelium by FGF signaling and Ras activation.   总被引:6,自引:0,他引:6  
During vertebrate embryogenesis, the neuroectoderm differentiates into neural tissues and also into non-neural tissues such as the choroid plexus in the brain and the retinal pigment epithelium in the eye. The molecular mechanisms that pattern neural and non-neural tissues within the neuroectoderm remain unknown. We report that FGF9 is normally expressed in the distal region of the optic vesicle that is destined to become the neural retina, suggesting a role in neural patterning in the optic neuroepithelium. Ectopic expression of FGF9 in the proximal region of the optic vesicle extends neural differentiation into the presumptive retinal pigment epithelium, resulting in a duplicate neural retina in transgenic mice. Ectopic expression of constitutively active Ras is also sufficient to convert the retinal pigment epithelium to neural retina, suggesting that Ras-mediated signaling may be involved in neural differentiation in the immature optic vesicle. The original and the duplicate neural retinae differentiate and laminate with mirror-image polarity in the absence of an RPE, suggesting that the program of neuronal differentiation in the retina is autonomously regulated. In mouse embryos lacking FGF9, the retinal pigment epithelium extends into the presumptive neural retina, indicating a role of FGF9 in defining the boundary of the neural retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号