首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aspartame (L-aspartyl L-phenylalanine methyl ester) isan artificial sweetener as shown in Fig.1 (A) [1]. Studieson its structure and function showed that its N-terminalL-aspartyl residue could only be replaced by aminomalonyl[2] or L-asparaginyl [3] residue. When its peptide bondwas replaced by an ester bond [Fig. 1(B)] or the hydrogenof amide in the peptide bond replaced by a methyl group[Fig. 1(C)], its sweetness was lost [4]. According to thecrystal structure of aspartame, between the …  相似文献   

2.
One-electron oxidation of TyrOH-TrpH or TrpH-TyrOH in aqueous solutions by N3 radicals occurs predominantly at the tryptophyl residue. The corresponding indolyl radicals (absorbing at 510 nm) are subsequently transformed into phenoxyl radicals (absorbing at 390/405 nm): TyrOH-Trp leads to TyrO-TrpH, k5 = 5.4 x 10(4)s-1, (5), Trp-TyrOH leads to TrpH-TyrO, k7 = 7.3 x 10(4)s-1. (7) The first-order radical transformation rates are independent of the (initial) concentration of N3 or peptide and unaffected by urea (as a modifier of hydrogen bond structures). Intermolecular conversion of indolyl into phenoxyl radicals, e.g. by reaction of GlyH-Trp with TyrOH-GlyH, is very slow and inefficient. It is concluded that reactions (5) and (7) occur by intramolecular charge transfer across the peptide bond.  相似文献   

3.
Binding of peptide epitopes to major histocompatibility complex proteins involves multiple hydrogen bond interactions between the peptide main chain and major histocompatibility complex residues. The crystal structure of HLA-DQ2 complexed with the alphaI-gliadin epitope (LQPFPQPELPY) revealed four hydrogen bonds between DQ2 and peptide main chain amides. This is remarkable, given that four of the nine core residues in this peptide are proline residues that cannot engage in amide hydrogen bonding. Preserving main chain hydrogen bond interactions despite the presence of multiple proline residues in gluten peptides is a key element for the HLA-DQ2 association of celiac disease. We have investigated the relative contribution of each main chain hydrogen bond interaction by preparing a series of N-methylated alphaI epitope analogues and measuring their binding affinity and off-rate constants to DQ2. Additionally, we measured the binding of alphaI-gliadin peptide analogues in which norvaline, which contains a backbone amide hydrogen bond donor, was substituted for each proline. Our results demonstrate that hydrogen bonds at P4 and P2 positions are most important for binding, whereas the hydrogen bonds at P9 and P6 make smaller contributions to the overall binding affinity. There is no evidence for a hydrogen bond between DQ2 and the P1 amide nitrogen in peptides without proline at this position. This is a unique feature of DQ2 and is likely a key parameter for preferential binding of proline-rich gluten peptides and development of celiac disease.  相似文献   

4.
A new class of fluorescent nucleotide analogs which contain the fluorophore 1-aminonaphthalene-5-sulfonate attached via a gamma-phosphoamidate bond has been synthesized. Both the purine and pyrimidine analogs have fluorescence emission maxima at 460 nm. Cleavage of the alpha-beta-phosphoryl bond produces change in both the absorption and fluorescence emission spectra. The fluorescence of the pyrimidine analogs is quenched; cleavage of the alpha-beta-phosphoryl bond of the UTP analog produces about a 14-fold increase in fluorescence intensity at 500 nm. Under the same conditions the fluorescence of the CTP analog increases about 8-fold, whereas the fluorescence of the purine analogs shows only a slight change. These derivatives are good substrates for Escherichia coli RNA polymerase with only slightly increased Km values and with Vmax values about 50 to 70% that of the normal nucleotides. They are used less efficiently by wheat germ RNA polymerase II. The ATP analog can be used by E. coli RNA polymerase to initiate RNA chains.  相似文献   

5.
The binding of peptides to MHC class II molecules is mediated in part by a conserved array of intermolecular hydrogen bonds. We have evaluated the consequences of disrupting the hydrogen bond between beta-His-81 of the class II molecule and bound peptide. These studies revealed that peptide dissociation rates were accelerated by factors ranging to 200-fold. The sensitivity of a peptide to loss of the hydrogen bond is inversely correlated with the inherent kinetic stability of the peptide-MHC complex. The same relationship has been observed between inherent kinetic stability and the susceptibility to DM. Given that the rate enhancement observed for MHC class II I-Ad protein mutated at position 81 in the beta-chain is comparable with DM-catalyzed rates for other class II molecules, we suggest that DM could function by stabilizing a peptide-MHC intermediate in which one or more hydrogen bonds between the peptide and MHC, such as that contributed by the beta-His-81 hydrogen bond, are disrupted.  相似文献   

6.
The X-ray structure of the inhibitor complex of bovine ribonuclease A with cytidylic acid (2'-CMP) has been determined at 2.3 A (1 A = 0.1 nm) resolution and refined by restrained least-squares refinement to R = 0.132 for 5650 reflections. Incorporation of the inhibitor molecule has occurred with little disturbance of the protein main-chain atoms, although significant displacement of some side-chain atoms has occurred, particularly in the region of the active site. The binding of 2'-CMP to ribonuclease A is different from that of the related cytidine-N(3)-oxide 2'-phosphate, which has an extra oxygen on N(3) of the cytidine base. The PO4(2-) group is held by hydrogen bond interactions to the side-groups of His 12, Glu 11 and His119. Thr45 is involved in stabilizing the enzyme-ligand complex by forming hydrogen bond interactions between O(gamma) and the pyrimidine base N(3) atom and between the main-chain N(45) and O(2) of the base. Phe120 is much closer to the inhibitor than in the cytidine N(3)-oxide 2'-phosphate structure.  相似文献   

7.
The R-state structures of the ATP and CTP complexes of aspartate carbamoyltransferase ligated with phosphonoacetamide and malonate have been determined at 2.8-A resolution and neutral pH. These structures were solved by the method of molecular replacement and were refined to crystallographic residuals between 0.167 and 0.182. The triphosphate, the ribose, and the purine and pyrimidine moieties of ATP and CTP interact with similar regions of the allosteric domain of the regulatory dimer. ATP and CTP relatively increase and decrease the size of the allosteric site in the vicinity of the base, respectively. For both CTP and ATP at pH 7, the gamma-phosphates are bound to His20 and are also near Lys94, while the alpha-phosphates interact exclusively with Lys94. The 2'-hydroxyls of both CTP and ATP are near the amino group of Lys60. The pyrimidine ring of CTP makes specific hydrogen bonds at the allosteric site: the NH2 group donates hydrogen bonds to the main-chain carbonyls of Ile12 and Tyr89 and the pyrimidine ring carbonyl oxygen accepts a hydrogen bond from the amino group of Lys60; the nitrogen at position 3 in the pyrimidine ring is hydrogen bonded to a main-chain NH group of Ile12. The purine ring of ATP also makes numerous interactions with residues at the allosteric site: the purine NH2 (analogous to the amino group of CTP) donates a hydrogen bond to the main-chain carbonyl oxygen of Ile12, the N3 nitrogen interacts with the amino group of Lys60, and the N1 nitrogen hydrogen bonds to the NH group of Ile12. The binding of CTP and ATP to the allosteric site in the presence of phosphonoacetamide and malonate does not dramatically alter the structure of the allosteric binding site or of the allosteric domain. Nonetheless, in the CTP-ligated structure, the average separation between the catalytic trimers decreases by approximately 0.5 A, indicating a small shift of the quaternary structure toward the T state. In the CTP- and ATP-ligated R-state structures, the binding and occupancy of phosphonoacetamide and malonate are similar and the structures of the active sites are similar at the current resolution of 2.8 A.  相似文献   

8.
The crystal structure of 5-nitrouridine was determined by X-ray analysis. The pyrimidine ring is slightly non-planar, showing a shallow boat conformation. The nitro group has no influence on the C4 - O4 bond length as compared to uridine. The ribose shows the C3'-endo conformation and the base is in the anti orientation to the sugar with a torsion angle of 25.6 degrees. This conformation is stabilized by a hydrogen bond from the base to the ribosyl moiety (H6 ... 05'). Stacking interactions between neighboring bases are almost negligible in the crystal. A water molecule is involved in a bifurcated donating hydrogen bond to 04 and to 052 of the nitro group of the one base and an accepting bond from the H3 of the other base. Two more hydrogen bonds are formed between the water molecule and the ribose. The structural aspects of 5-nitrouridine are discussed with respect to the special stacking features found for 5-nitro-1-(beta-D-ribosyluronic acid)-uracil monohydrate in the crystal (1).  相似文献   

9.
The conformations of the dipeptide t-Boc-Pro-DAla-OH and the tripeptide t-Boc-Pro-DAla-Ala-OH have been determined in the crystalline state by X-ray diffraction and in solution by CD, n.m.r. and i.r. techniques. The unit cell of the dipeptide crystal contains two independent molecules connected by intermolecular hydrogen bonds. The urethane-proline peptide bond is in the cis orientation in both the molecular forms while the peptide bond between Pro and DAla is in the trans orientation. The single dipeptide molecule exhibits a "bent" structure which approximates to a partial beta-turn. The tripeptide adopts the 4----1 hydrogen-bonded type II beta-turn with all trans peptide bonds. In solution, the CD and i.r. data on the dipeptide indicate an ordered conformation with an intramolecular hydrogen bond. N.m.r. data indicate a significant proportion of the conformer with a trans orientation at the urethane-proline peptide bond. The temperature coefficient of the amide proton of this conformer in DMSO-d6 points to a 3----1 intramolecular hydrogen bond. Taken together, the data on the dipeptide in solution indicate the presence (in addition to the cis conformer) of a C7 conformation which is absent in the crystalline state. The spectral data on the tripeptide indicate the presence of the type II beta-turn in solution in addition to the nonhydrogen-bonded conformer with the cis peptide bond between the urethane and proline residues. The relevance of these data to studies on the substrate specificity of collagen prolylhydroxylase is pointed out.  相似文献   

10.
Degradation of three nucleic acid bases, uracil, thymine and cytosine, by free radical systems containing ascorbic acid and/or hydrogen peroxide was found to occur when these two reagents were used in combination. Any significant differences in the mode of degradation were not observed among these pyrimidine bases. Ferrous ion added in this system intensified the degree of degradation.

Phosphate bond cleavage of mononucleotides by ascorbic acid—hydrogen peroxide was also demonstrated to occur in a lesser degree than other phosphate esters.

Special device of spectrometric determination of pyrimidine bases in the reaction system was worked out.  相似文献   

11.
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution.  相似文献   

12.
The model peptide XAAAAEAAARAAAARamide is used to examine the contributions of an N-terminal capping interaction to the conformation and stability of a helical ensemble. The reference peptide has an alanine residue at position X while the capping peptide has a serine residue at this position. The helical ensemble was characterized using circular dichroism measurements and carbonyl-carbon chemical shift measurements of selectively enriched residues. The distribution of helicity within the ensemble of the reference peptide at pH 11 and 0°C appears symmetrical, having a uniform central helix and frayed ends. This distribution is truncated at pH 6 by the repulsive electrostatic interaction between the positively charged α-amino group and the positively charged end of the helical macrodipole. The capping peptide forms a side-chain/main-chain hydrogen bond involving the serine residue and amide of alanine 4. The presence of this hydrogen bond generates a unique motif in the chemical shift profile of its helical ensemble. The conformational stabilization contributed by this hydrogen bond, although cooperatively distributed throughout the helical ensemble, is preferentially focused within the first helical turn. The stabilization provided by this hydrogen bond is able to offset the truncation of the helical ensemble generated by the repulsive electrostatic interaction observed at pH 6. Proteins 33:167–176, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
An 1H-nmr study of 2-acetamido-2-deoxy-3,4,6-tri-O-acetyl-D-galactopyranose (AcGalNAc) glycosylated Thr-containing tripeptides in Me2SO-d6 solution reveals two mutually exclusive intramolecular hydrogen bonds. In Z-Thr(AcGalNAc)-Ala-Ala-OMe, there is an intramolecular hydrogen bond between the Thr amide proton and the sugar N-acetyl carbonyl oxygen. The strength of this hydrogen bond will be dependent on the amino acid residues on the Thr C terminal side to some undetermined distance. In Ac-Thr(AcGalNAc)-Ala-Ala-OMe, a different intramolecular hydrogen bond between the sugar N-acetyl amide proton and the Thr carbonyl oxygen exists. The choice of hydrogen bonds seems dependent on the bulkiness of the residues on the Thr N terminal side. The consequence of such strong hydrogen bonds is a clearly defined orientation of the sugar moiety with respect to the peptide backbone. In the former, the plane of the sugar pyranose ring is roughly oriented perpendicularly to the peptide backbone. The latter orientation is where the plane of the sugar ring is roughly in line with the peptide backbone. In both orientations, the sugar moiety can increase the shielding of the neighboring amino acid residues from the solvent. The idea that the amino acid residues near the glycosylated Thr influence orientation of the sugar moiety with respect to the peptide backbone and in turn possibly hinder peptide backbone flexibility has interesting implications in the conformational as well as the biological role of O-glycoproteins.  相似文献   

14.
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution.  相似文献   

15.
The catalytic mechanism of aspartic proteinases   总被引:3,自引:0,他引:3  
L H Pearl 《FEBS letters》1987,214(1):8-12
The highly symmetric active site of an aspartic proteinase, endothiapepsin, binds a water molecule ideally situated for nucleophilic attack on a substrate peptide bond whose distortion from planarity is stabilised by interactions of the substrate with the extended binding cleft. The apparent electrophilicity of the catalysis results from this distortion. The scissile peptide bond is orientated with the carbonyl oxygen hydrogen bonding to the tip of the beta-hairpin 'flap' which lies over the cleft. Nucleophilic attack by the bound water leads to a tetrahedral intermediate similar to observed complexes with hydroxyl inhibitors and stabilised by hydrogen bonds with the flap.  相似文献   

16.
Natural and artificial living cells and their substructures are self-assembling, due to electron correlation interactions among biological and water molecules, which lead to attractive dispersion forces and hydrogen bonds. Dispersion forces are weak intermolecular forces that arise from the attractive force between quantum multipoles. A hydrogen bond is a special type of quantum attractive interaction that exists between an electronegative atom and a hydrogen atom bonded to another electronegative atom; and this hydrogen atom exist in two quantum states. The best method to simulate these dispersion forces and hydrogen bonds is to perform quantum mechanical non-local density functional potential calculations of artificial minimal living cells consisting of around 1,000 atoms. The cell systems studied are based on peptide nucleic acid and are 3.0–4.2 nm in diameter. The electron tunneling and associated light absorption of the most intense transitions, as calculated by the time dependent density functional theory method, differs from spectroscopic experiments by only 0.2–0.3 nm, which is within the value of experiment errors. This agreement implies that the quantum mechanically self-assembled structures of artificial minimal living cells very closely approximate realistic ones.  相似文献   

17.
Oligonucleotide hybridization probes containing nucleoside analogs offer a potential strategy for binding specific DNA sequences that bear pro-mutagenic O6-G alkylation adducts. To optimize O6-Me-G-targeting probes, an understanding of how base pairs with O6-Me-G are stabilized is needed. In this study, we compared the ability of O6-Me-G and G to hydrogen bond with three pyrimidine-like nucleobases (Z, 4-thio-U, and 3-deaza-C) bearing varied hydrogen bond donor and acceptor groups. We found that duplexes containing the pyrimidine analog nucleoside:G pairs were more thermodynamically stable than those containing pyrimidine analog nucleoside:O6-alkyl-G pairs. Thus, hydrogen bonding alone was not sufficient to impart selectivity to probes that target O6-G alkylation adducts in DNA.  相似文献   

18.
Peloquin JM  Tang XS  Diner BA  Britt RD 《Biochemistry》1999,38(7):2057-2067
We have used electron spin-echo envelope modulation spectroscopy (ESEEM) to characterize the protein-cofactor interactions present in the QA- binding pocket of PS II centers isolated from spinach and Synechocystis. We conclude that the ESEEM spectrum of QA- is the result of interactions of the S = 1/2 electron spin of QA- with the I = 1 nuclear spins of the peptide nitrogens of two different amino acids. One peptide nitrogen has ESEEM peaks near 0.7, 2.0, 2.85, and 5.0 MHz with isotropic and dipolar hyperfine couplings of Aiso = 2.0 MHz and Adip = 0.25 MHz, respectively. On the basis of these hyperfine couplings we predict the existence of a strong hydrogen bond between QA- and the peptide nitrogen with a hydrogen bond distance of about 2 A. We have not identified the amino acid origin of this peptide nitrogen. By using amino acid specific isotopic labeling in conjunction with site-directed mutagenesis, we demonstrate that the second peptide nitrogen is that of D2-Ala260, with ESEEM peaks near 0.6 and 1.5 MHz and an isotropic hyperfine coupling, Aiso, less than 0.2 MHz. This small isotropic coupling suggests that the D2-Ala260 peptide nitrogen at best forms a weak hydrogen bond with QA-.  相似文献   

19.
In order to describe the detailed conformation of the oxidized flavodoxin from a eukaryotic red alga, Chondrus crispus, the crystal structure has been refined by a restrained least-squares method. The crystallographic R factor is 0.168 for 13,899 reflections with F greater than 2 sigma F between 6.0 and 1.8 A resolution. The refined model includes 173 amino acid residues, flavin mononucleotide (FMN) and 110 water molecules. The root-mean-square deviation in bond lengths from ideal values is 0.015 A, and the mean co-ordinate error is estimated to be 0.2 A. The FMN is located at the periphery of the molecule. The orientation of the isoalloxazine ring is such that the C-7 and C-8 methyl groups are exposed to solvent and the pyrimidine moiety is buried in the protein. Three peptide segments, T8-T13, T55-T58 and D94-C103, are involved in FMN binding. The first segment of T8-T13 enfolds the phosphate group of the FMN. The three oxygen atoms in the phosphate group form extensive hydrogen bonds with amide groups of the main chain and the O gamma atoms of the side-chains in this segment. T55 O and W56 N epsilon 1 in the second segment form hydrogen bonds with O-2 in the ribityl moiety and one of the oxygen atoms in the phosphate group, respectively. The O gamma H of T58 forms a hydrogen bond with the N-5 atom in the isoalloxazine ring, which is expected to be protonated in the semiquinone form. The third segment is in contact with the isoalloxazine ring. It appears that the hydrogen bond acceptor of the NH of Asp94 in the third segment is O-2 rather than N-1 in the isoalloxazine ring. The isoalloxazine ring is flanked by the side-chains of Trp56 and Tyr98; it forms an angle of 38 degrees with the indole ring of Trp56 and is almost parallel to the benzene ring of Tyr98. The environment of the phosphate group is conserved as in other flavodoxins whereas that of the isoalloxazine ring differs. The relationship between the hydrogen bond to the N-5 in the ring and the redox potential for the oxidized/semiquinone couple is discussed.  相似文献   

20.
A continuous chain of hydrogen bonded groups, which forms cross-hands interaction between domains in molecules of pepsin-like enzymes, has been revealed. The chain contains a pair of 6 symmetrically related hydrogen bonds between main chain atoms and the two conserved water molecules. The peptide groups forming hydrogen bond with the inner oxygens of the active carboxyls are important elements of the chain. The so-called "fireman grip" hydrogen bonding, consisting of a pair of the two symmetrically related bonds, is an integral part of this system of interactions. One of the water molecules in this system has a zero accessibility and forms a very short hydrogen bond with the active site interacting peptide group. This chain connects tightly the two regions of domains which have a high correlation in conformational mobility. The retroviral enzymes have an abortive chain of the interdomain interaction in this region which is reduced to the "fireman grip" net.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号