首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal unfolding of myosin rod, light meromyosin (LMM), and myosin subfragment 2 (S-2) was studied by differential scanning calorimetry (DSC) over the pH range of 6.5–9.0 in 0.5M KCl and either 0.20M sodium phosphate or 0.15M sodium pyrophosphate. Two rod samples were examined: one was purified by Sephadex G-200 without prior denaturation (native rod), and the other was purified by a cycle of denaturation-renaturation followed by Sephacryl S-200 chromatography (renatured rod). There were clearly distinguishable differences in the calorimetric behavior of these two samples. At pH 7.0 in phosphate the DSC curves of native rod were deconvoluted into six endothermic two-state transitions with melting temperatures in the range of 46–67°C and a total enthalpy of 4346 kJ/mol. Under identical conditions the melting profile of LMM was resolved into five endothermic peaks with transition temperatures in the range of 45–66°C, and the thermal profile of long S-2 was resolved into two endotherms, 46 and 57°C. Transition 4 observed with native rod was present in the deconvoluted DSC curve for long S-2, but absent in the DSC curve for LMM. This transition was identified with the high-temperature transition detected with long S-2 and attributed to the melting of the coiled-coil α-helical segment of subfragment 2 (short S-2). The low-temperature transition of long S-2 was attributed to the unfolding of the hinge region. The smallest transition temperatures observed for all three fragments were 45–46°C. It is suggested that the most unstable domain in rod (domain 1) responsible for the 46°C transition includes both the hinge region, which is the C-terminal segment of long S-2, and a short N-terminal segment of LMM. This domain, accounting for 21% of the rod structure, contains the S-2/LMM junction, and upon proteolytic cleavage yields the C-terminal and N-terminal ends of long S-2 and LMM, respectively. Over the pH range of 6.5–7.5, the observed specific heat of denaturation of rod was approximately equal to the sum of the specific heats of LMM and S-2. This finding provides an additional argument for the existence of independent domains in myosin rod.  相似文献   

2.
The question of hinging in myosin rod from rabbit skeletal muscle has been reexamined. Elastic light scattering and optical rotation have been used to measure the radius of gyration and fraction helix, respectively, as a function of temperature for myosin rod, light meromyosin (LMM), and long subfragment 2 (long S-2). The radius of gyration vs temperature profile of myosin rod is shifted with respect to the optical rotation melting curve by about -5 degrees C. Similar studies on both LMM and long S-2 show virtually superimposable profiles. To correlate changes in the secondary structure with the overall conformation, plots of radius of gyration vs fraction helix are presented for each myosin subfragment. Myosin rod exhibits a marked decrease in the radius of gyration from 43 nm to approximately 35 nm, while the fraction helix remains at nearly 100%. LMM and long S-2 did not show this behavior. Rather, a decrease in the radius of gyration of these fragments occurred with comparable changes in fraction helix. These results are interpreted in terms of hinging of the myosin rod within the LMM/S-2 junction.  相似文献   

3.
Two bands in the Raman spectrum of myosin, at 1,304 cm-1 and 1,270 cm-1, are attributable to alpha-helical structure. The first of these, also present in the spectrum of light meromyosin (LMM) but not in that of subfragment-1 (S-1), is assigned to the coiled-coil tail region of myosin; the second, seen in spectra of S-1 or heavy meromyosin (HMM), is largely absent from the spectrum of light meromyosin and is likely to correspond to the alpha-helical segments of the head region. When myosin or LMM aggregates, spectral bands attributable to backbone and sidechain groups sharpen suggesting a reduction in motional freedom. This sharpening is particularly apparent in the 902 cm-1 C--C stretching mode. Mg2+ broadens and shifts the peak at 1,244 cm-1 to 1,237 cm-1 and diminishes the intensity from 1,230 to 1,240 cm-1, changes which appear to be associated the S-1 region. MgPPi produces changes in the 1,300 cm-1 region attributable to alpha-helical regions in coiled-coil structures suggesting that MgPPi affects not only S-1, but also some part of the myosin rod.  相似文献   

4.
Effects of temperature and pH on intact rabbit and chicken myosin, isolated myosin rods, rabbit subfragment-2 (61 kDa, 53 kDa, and 34 kDa) and chicken light meromyosin (LMM) fragments were tested to induce a phase transition from alpha-helix to coil conformation, within the hinge region. The influence of temperature and pH were studied directly with length determination by electron microscopy. An increase of temperature to 50 degrees C yielded a shortening of 16 nm, 8 to 9 nm and 7 to 11 nm for intact myosin, isolated rods and long S-2 fragments, respectively. The length of the 34 kDa short S-2 and LMM fragments were unchanged. An increase of pH from neutral to pH 8.0 yielded values that were somewhat smaller, e.g. 12 nm, 6 nm and 6 to 8 nm for intact myosin, isolated rods and long S-2 fragments, respectively, whereas the 34 kDa short S-2 LMM fragments were also unaffected. Thus, melting and subsequent shortening is confined to the region between LMM and short S-2 segment, that is the hinge region. Alteration of temperature had a stronger shortening effect than alteration of pH, and shortening of long S-2 was more pronounced under physiological salt conditions as compared with high (0.3 M) salt. The shortening of rods in intact myosin amounted to twice the value observed with isolated rods. The amount of contraction was somewhat smaller in rods than in the 61 kDa and 53 kDa long S-2 fragments.  相似文献   

5.
It has been observed that heavy meromyosin (HMM) propels actin filaments to higher velocities than native myosin in the in vitro motility assay, yet the reason for this difference has remained unexplained. Since the major difference between these two proteins is the presence of the tail in native myosin, we tested the hypothesis that unknown interactions between actin and the tail (LMM) slow motility in native myosin. Chymotryptic HMM and LMM were mixed in a range of molar ratios (0-5 LMM/HMM) and compared to native rat skeletal myosin in the in vitro motility assay at 30 degrees C. Increasing proportions of LMM to HMM slowed actin filament velocities, becoming equivalent to native myosin at a ratio of 3 LMM/HMM. NH4+ -ATPase assays demonstrated that HMM concentrations on the surface were constant and independent of LMM concentration, arguing against a simple displacement mechanism. Relationships between velocity and the number of available heads suggested that the duty cycle of HMM was not altered by the presence of LMM. HMM prepared with a lower chymotrypsin concentration and with very short digestion times moved actin at the same high velocity. The difference between velocities of actin filament propelled by HMM and HMM/LMM decreased with increasing ionic strength, suggesting that ionic bonds between myosin tail and actin filaments may play a role in slowing filament velocity. These data suggest the high velocities of actin filaments over HMM result from the absence of drag generated by the myosin tail, and not from proteolytic nicking of the motor domain.  相似文献   

6.
A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point approximately 92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A-bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of approximately 13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, approximately 68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross-bridges. Each half M-region contained five MF20 striations (approximately 13 nm apart) with a distance between stripes 1 and 1', on each half of the bare zone, of approximately 18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle (Huxley, H. E., 1963, J. Mol. Biol., 7:281-308) and, for the first time, directly demonstrate that the 14-15-nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle.  相似文献   

7.
To explore the role of a hydrophobic domain of actin in the interaction with a myosin chain we have synthesized a peptide corresponding to residues 75-106 of native actin monomer and studied by fluorescence and ELISA the interaction (13+/-2.6x10(-6) M) with both S-1 and (27 kDa-50 kDa-20 kDa) S-1 trypsin derivative of myosin. The loop corresponding to 96-103 actin residues binds to the S-1 only in the absence of Mg-ATP and under similar conditions but not to the trypsin derivative S-1. Biotinylated C74-K95 and I85-K95 peptide fragments were purified after actin proteolysis with trypsin. The C74-K95 peptide interacted with both S-1 and the S-1 trypsin derivative with an apparent Kd(app) of 6+/-1.2x10(-6) M in the presence or absence of nucleotides. Although peptide fragment I85-K95 binds to S-1 with a Kd(app) of 12+/-2.4x10(-6) M, this fragment did not bind to the trypsin S-1 derivative. We concluded that the actin 85-95 sequence should be a potential binding site to S-1 depending of the conformational state of the intact 70 kDa segment of S-1.  相似文献   

8.
A Bertazzon  T Y Tsong 《Biochemistry》1990,29(27):6453-6459
Differential scanning calorimetry (DSC) has detected at least six quasi-independent structure domains in myosin rod [Potekhin, S.A., & Privalov, P.L. (1978) Biofizika 23, 219-223]. These domains were found to be remarkably sensitive to pH in the physiological range, i.e., pH 6-8. We compared the thermodynamic characteristics, and studied effects of pH on the stability, of individual domains in rod, light meromyosin (LMM), and subfragment 2 (S-2). In rod, the lowest stability domain (approximately 400 amino acid residues per double strand), with a Tm of 42.4 degrees C, a delta Hcal of 190 kcal/mol, and a delta G of 3.39 kcal/mol, at pH 7.02, destabilized by absorption of protons, is located at the LMM/S-2 junction and split into two parts, one associated with S-2 (approximately 100 residues per double strand) and the other with LMM (300 residues per double strand). The fragment with S-2 is likely a part of the "hinge" suggested by Swenson and Ritchie [(1980) Biochemistry 19, 5371-5375]. All other domains of rod released protons on melting. The domains located in S-2 were the most sensitive to pH and released a total of 0.9 proton on melting. The thermal meltings of all domains in myosin rod, LMM, and S-2 were independent of each other, and enthalpies of melting were additive in the whole pH range studied. Their sensitivities to pH and KCl were also unaffected by the presence or absence of other fragments. For example, domains in an isolated S-2 behaved similarly as they were in the rod, and so were domains in LMM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
I Ringel  Y M Peyser  A Muhlrad 《Biochemistry》1990,29(38):9091-9096
The binding of various forms of vanadate to myosin and myosin subfragment 1 (S-1) was studied by 51V NMR at increasing vanadate concentrations between 0.06 and 1.0 mM. The distribution of the various forms of vanadate in the solution depended on the total concentration of vanadate. At low concentrations, the predominant vanadate form was monomeric, while at high concentration, it was tetrameric. The presence of myosin or S-1 in the solution produced a significant broadening of the signal of each form of vanadate, indicating that all of them bind to the protein. Addition of ATP, which does not affect the 51V NMR spectra in the absence of proteins, causes their significant alteration in the presence of myosin or S-1. The changes, which include the broadening of the signal of the monomeric and the narrowing of the signal of the oligomeric vanadate forms, indicate that more monomeric and less oligomeric vanadate binds to the proteins in the presence than in the absence of ATP. Irradiation by near-UV light in the presence of vanadate cleaves S-1 at three specific sites--at 23, 31, and 74 kDa from the N-terminus. The cleavages at 23 and 31 kDa are specifically inhibited by the addition of ATP. The vanadate-associated photocleavage of S-1 also depends on the total concentration of vanadate; it is observed only when the concentration of vanadate is at least 0.2 mM. This was also the lowest concentration at which oligomeric vanadate was detected in the 51V NMR spectra. From the parallel concentration dependence of the photocleavage and the appearance of the tetrameric vanadate, it is concluded that photocleavage occurs only when tetrameric vanadate binds to S-1.  相似文献   

10.
The ability of myosin II to form filaments is essential for its function in vivo. This property of self association is localized in the light meromyosin (LMM) region of the myosin II molecules. To explore this property in more detail within the context of living cells, we expressed the LMM portion of the Dictyostelium myosin II heavy chain gene in wild-type Dictyostelium cells. We found that the LMM protein was expressed at high levels and that it folded properly into alpha- helical coiled-coiled molecules. The expressed LMM formed large cytoplasmic inclusions composed of entangled short filaments surrounded by networks of long tubular structures. Importantly, these abnormal structures sequestered the cell's native myosin II, completely removing it from its normal cytoplasmic distribution. As a result the cells expressing LMM displayed a myosin-null phenotype: they failed to undergo cytokinesis and became multinucleate, failed to form caps after treatment with Con A, and failed to complete their normal developmental cycle. Thus, expression of the LMM fragment in Dictyostelium completely abrogates myosin II function in vivo. The dominant-negative character of this phenotype holds promise as a general method to disrupt myosin II function in many cell types without the necessity of gene targeting.  相似文献   

11.
High-affinity membrane-associated and soluble folate binding proteins (FBPs) from human placenta, milk, and KB cells appear to share antigenic determinants [A. C. Antony et al. (1981) J. Biol. Chem. 256, 9684-9692 and (1985) 260, 14911-14917]. Iodination of a highly purified preparation of placental folate receptor (PFR) by various techniques resulted in significant denaturation of the PFR as evidenced by additional peaks of radioactivity on Sephacryl S-200 gel filtration in 1% Triton X-100. These denatured species had similar molecular weights on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as radioiodinated and native PFR, and were also recognized, albeit with less efficiency, by specific rabbit antiserum raised against purified PFR. Since these denatured species failed to bind folate, they were specifically excluded from 125I-PFR by their inability to bind pteroylglutamate-Sepharose. This ws accomplished in a single step by iodination of PFR bound to the affinity column and elution of 125I-PFR under identical conditions that the native PFR was purified. The purified 125I-PFR comigrated with unlabeled PFR on SDS-PAGE and its elution profile on Sephacryl S-200 gel filtration was identical to radioligand bound PFR. The resulting radioimmunoassay standard curve using this affinity chromatography purified 125I-PFR, unlabeled PFR, and anti-human PFR serum had a range for measurement between 5 and 500 ng of PFR and was not affected by the concentration of folate in the sample. The practical utility of this radioimmunoassay for measuring cross-reacting material to the PFR was validated by its ability to quantitate the 40,000 and 160,000 Mr FBPs which are the two major forms of high-affinity FBPs in human tissues.  相似文献   

12.
1. HMM and S-1 both bind one mol of calcium per mole of head, and a half of the calcium binding was diminished upon magnesium addition (10 mM) at the low affinity site. 2. The Mg-ATPase activity of HMM (without actin) was fully activated by the binding of one mol of calcium bound per mol of HMM. 3. The calcium binding profile to S-1 is the same as that to HMM, however, the Mg-ATPase activity of S-1 is independent of calcium binding. It is suggested that there are two kinds of myosin head (or S-1) in molluscan myosin, functionally different in calcium binding properties.  相似文献   

13.
Myosin fragments were fractionated on columns of the hydrophobic gel phenyl-Sepharose CL-4B. In the presence of high NaCl concentrations the fragments bound tightly to the columns; they could be eluted by decreasing the ionic strength, by increasing the pH, or by applying various concentrations of ethylene glycol. In myosin subfragment-1 (S-1), the light chains underwent partial dissociation from the heavy chain and bound separately to the column matrix. The order of strength of binding of the various species to the column was heavy chain > A1 light chain > A2 light chain > native S-1 > denatured heavy chain or S-1. Thus the hydrophobic gel appears to be able to differentiate between enzymatically active and inactive S-1. Under appropriate elution conditions it was possible to obtain S-1 preparations depleted from nicked heavy chains and with specific ATPase activities 34–130% higher than those of untreated S-1. When S-1(A2) was fractionated on phenyl-Sepharose a fivefold enrichment of the heavy chain with respect to the light chains was obtained, while the ATPase activity was equal or larger than that of the original S-1, implying that the light chains are not essential for ATPase activity. Thus, it seems that chromatography of S-1 on phenyl-Sepharose is a potentially useful method for obtaining a purified myosin heavy-chain fragment with a high ATPase specific activity.  相似文献   

14.
Ca2+ binding to pig cardiac myosin, subfragment-1 (S-1), and g2 light chain were investigated by the equilibrium dialysis method. Two different S-1s, one of which can bind Ca2+ and another which cannot, were prepared. In order to calculate the free Ca2+ concentrations adequately, the amounts of Ca2+ included in various chemicals and proteins were measured by atomic absorption spectroscopy. Ca2+ contamination was greatest in KCl among the chemicals tested. In addition, the Ca2+ strongly bound to myosin and S-1 was released in the presence of Mg2+. When Mg2+ was not added, the Ca2+-binding constant of myosin was 4 x 10(5) M-1 and the maximum binding number was 1.8 mol per mol of myosin. Cooperativity between the 2 Ca2+ bindings could not be demonstrated. Mg2+ strongly inhibited the Ca2+ binding: at a free Ca2+ concentration of 1 x 10(-5) M, 1.3 mol Ca2+ was bound to myosin in the absence of Mg2+, but 0.6 and 0.2 mol were bound in the presence of 0.3 and 4.5 mM Mg2+, respectively. The Ca2+-binding constant of S-1, which contained a 15,000 dalton component, was 8.6 x 10(5) M-1, and the maximum binding number was 0.7 mol per mol of S-1. The 15,000 dalton component could be exchanged with extraneous g2. S-1 which lacked the 15,000 component could not bind Ca2+ at free Ca2+ concentrations less than 0.1 mM. The Ca2+ binding to free g2 light chain was about 100 times weaker than the binding to myosin, as indicated previously for skeletal myosin (Okamoto, Y. & Yagi, K. (1976) J. Biochem. 80, 111--120). The Ca2+-binding constant was obtained as 4.1 x 10(3) M-1 in the absence of added Mg2+. Phosphorylation of g2 light chain did not affect the Ca2+ binding to the free g2 light chain or to myosin. Ca2+ binding to cardiac native tropomyosin was also measured.  相似文献   

15.
Substructure of the myosin rod and its correlation to filament formation is largely based on studies of proteolytic digests and expressed proteins. However, tryptic digestion of myosin always produces polymorphous peptides. Consequently, it is difficult to determine the relation between myosin substructure and filament formation. Similarly, filament formation with recombinant myosin protein is also difficult to interpret because it is never clear whether the recombinant protein folds like the native protein. We recently reported a novel metal protease isolated from squid liver, astacin-like squid metalloprotease (ALSM), which can specifically hydrolyze in vitro myosin heavy chain. In the present study, we examined the solubility properties of the 65-kDa peptide and light meromyosin (LMM) prepared by ALSM isoform II and trypsin digestion, respectively. The 65-kDa peptide is much less soluble than LMM under physiological conditions, even though the length of 65-kDa peptide is shorter than that of LMM. These results suggest that a novel substructure of myosin drives filament assembly.  相似文献   

16.
We purified to homogeneity the Dictyostelium discoideum myosin heavy chain kinase that is implicated in the heavy chain phosphorylation increases that occur during chemotaxis. The kinase is initially found in the insoluble fraction of developed cells. The major purification step was achieved by affinity chromatography using a tail fragment of Dictyostelium myosin (LMM58) expressed in Escherichia coli (De Lozanne, A., Berlot, C. H., Leinwand, L. A., and Spudich, J. A. (1988) J. Cell Biol. 105, 2990-3005). The kinase has an apparent molecular weight of 84,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent native molecular weight by gel filtration is 240,000. The kinase catalyzes phosphorylation of myosin heavy chain or LMM58 with similar kinetics, and the extent of phosphorylation for both is 4 mol of phosphate/mol. With both substrates the Vmax is about 18 mumol/min/mg and the Km is 15 microM. The myosin heavy chain kinase is specific to Dictyostelium myosin heavy chain, and the phosphorylated amino acid is threonine. The kinase undergoes autophosphorylation. Each mole of kinase subunit incorporates about 20 mol of phosphates. Phosphorylation of myosin by this kinase inhibits myosin thick filament formation, suggesting that the kinase plays a role in the regulation of myosin assembly.  相似文献   

17.
The binding of myosin to nylon fiber gives immobilized myosin with a considerable ATPase activity. Treatment of immobilized enzyme with papain results in the entire ATPase activity (known to be concentrated in myosin heads, (fragment HMM S-1)) being replaced from the fiber into the solution; this means that myosin is chemically bound to the fiber via its rod part (fragment LMM+HMM S-2). When nylon fiber is mechanically stretched, the ATPase activity of myosin attached to it sharply decreases; after relaxation of the fiber the enzymatic activity returns to the initial level. The detailed study of this phenomenon has shown that reversible inactivation of myosin upon fiber stretching is not the result of an altered microenvironment of the enzyme. The discovered regulatory effect is ascribed to deformation of myosin molecules induced by support stretching. Thus deformation of the myosin tail (not indispensable for ATPase since its cleaving-off does not alter the enzymatic activity) leads to decrease in the ATPase activity of the enzyme. The possible role of the above phenomenon in the mechanism of muscle contraction is discussed.  相似文献   

18.
cMyBP-C [cardiac (MyBP-C) myosin-binding protein-C)] is a sarcomeric protein involved both in thick filament structure and in the regulation of contractility. It is composed of eight IgI-like and three fibronectin-3-like domains (termed C0-C10). Mutations in the gene encoding cMyBP-C are a principal cause of HCM (hypertrophic cardiomyopathy). cMyBP-C binds to the LMM (light meromyosin) portion of the myosin rod via its C-terminal domain, C10. We investigated this interaction in detail to determine whether HCM mutations in beta myosin heavy chain located within the LMM portion alter the binding of cMyBP-C, and to define the precise region of LMM that binds C10 to aid in developing models of the arrangement of MyBP-C on the thick filament. In co-sedimentation experiments recombinant C10 bound full-length LMM with a K(d) of 3.52 microM and at a stoichiometry of 1.14 C10 per LMM. C10 was also shown to bind with similar affinity to LMM containing either the HCM mutations A1379T or S1776G, suggesting that these HCM mutations do not perturb C10 binding. Using a range of N-terminally truncated LMM fragments, the cMyBP-C-binding site on LMM was shown to lie between residues 1554 and 1581. Since it had been reported previously that acidic residues on myosin mediate the C10 interaction, three clusters of acidic amino acids (Glu1554/Glu1555, Glu1571/Glu1573 and Glu1578/Asp1580/Glu1581/Glu1582) were mutated in full-length LMM and the proteins tested for C10 binding. No effect of these mutations on C10 binding was however detected. We interpret our results with respect to the localization of the proposed trimeric collar on the thick filament.  相似文献   

19.
Electric birefringence measurements and depolarized light scattering experiments were performed with HMM, LMM, and rod, the three fragments of myosin, under conditions (0.3 M KCl, 0.02 M PO4, pH 7.3) the medium currently used for biochemical assays of myosin in its native state as well as of its subfragments. The comparison of myosin and rod relaxation times (17.2 and 22.8 microseconds, respectively) suggests that the average bend angle in the tail is sharper in intact myosin (90 degrees) whereas rod, when detached from the heads, is a more elongated species with an average bend angle of 120-135 degrees. The LMM relaxation time (6.4 microseconds) is consistent with a rigid linear stick model of length 78 nm. Flexibility in myosin tail is thus confirmed as located in the HMM-LMM hinge. LMM and rod did not exhibit any significant variation of their apparent relaxation times with concentration and the decay curves were best fitted by a single exponential, evidence that the concentration of parallel staggered dimers was negligible in the concentration range studied here (0-7 g/l). This observation lends support to previous results obtained with myosin. Respective HMM, LMM, and rod molecular weights and homogeneity as evaluated by SDS-PAGE analysis were correlated to the Kerr constants of their solutions. Large variations in LMM Kerr constants could be related to the loss of a COOH-terminal peptide on prolonged chymotryptic digestion. Electric birefringence combined with depolarized light scattering is presented as a potential method for net charge distribution studies.  相似文献   

20.
E Reisler  J Liu  P Cheung 《Biochemistry》1983,22(21):4954-4960
The effect of Mg2+ on the disposition of myosin cross-bridges was studied on myofibrils and synthetic myosin and rod filaments by employing chymotryptic digestion and chemical cross-linking methods. In the presence of low Mg2+ concentrations (0.1 mM), the proteolytic susceptibility at the heavy meromyosin/light meromyosin (HMM/LMM) junction in these three systems sharply increases over the pH range from 7.0 to 8.2. Such a change has been previously associated with the release of myosin cross-bridges from the filament surface [Ueno, H., & Harrington, W.F. (1981) J. Mol. Biol. 149, 619-640]. Millimolar concentrations of Mg2+ block or reverse this charge-dependent transition. Rod filaments show the same behavior as myosin filaments, indicating that the low-affinity binding sites for Mg2+ are located on the rod portion of myosin. The interpretation of these results in terms of Mg2+-mediated binding of cross-bridges to the filament backbone is supported by cross-linking experiments. The normalized rate of S-2 cross-linking in rod filaments at pH 8.0, kS-2/kLMM, increases upon addition of Mg2+ from 0.30 to 0.65 and approaches the cross-linking rate measured at pH 7.0 (0.75), when the cross-bridges are close to the filament surface. In rod filaments prepared from oxidized rod particles, chymotryptic digestion proceeds both at the S-2/LMM junction and at a new cleavage site located in the N-terminal portion of the molecule. Kinetic analysis of digestion rates at these two sites reveals that binding of Mg2+ to oxidized myosin rods has a similar effect at both sites over the pH range from 7.0 to 8.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号