共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol-dependent cytolysins (CDCs) are produced by a large number of pathogenic Gram-positive bacteria. Most of these single-chain proteins are secreted in the extracellular medium. Among the species producing CDCs, only two species belonging to the genus Listeria (Listeria monocytogenes and Listeria ivanovii) are able to multiply intracellularly and release their toxins in the phagosomal compartment of the infected host cell. This review provides an updated overview on the importance of listeriolysin O (LLO) in the pathogenicity of L. monocytogenes, focusing mainly on two aspects: (1) the structure-function relationship of LLO and (2) its role in intra- and extracellular signalling. We first examine the specific sequence determinants, or protein domains, that make this cytolysin so well adapted to the intracellular lifestyle of L. monocytogenes. The roles that LLO has in cellular signalling events in the context of relations to pathogenesis are also discussed. 相似文献
2.
The influence of cysteine or cysteine-HCl and their combination with potassium sorbate on growth of Listeria monocytogenes and listeriolysin O (LLO) secretion, and on activation of LLO in the haemolysin assay system was studied. Both cysteine and cysteine-HCl (10 and 20 mmol 1-1 ) enhanced LLO secretion in tryptic soy broth supplemented with yeast extract during 24 h incubation at 35°C. While sorbate did not affect growth, it suppressed both LLO secretion and LLO activation by cysteine in the haemolysin activity assay. These findings provide further evidence that sulphydryl-containing enzymes are implicated in the mechanism of microbial inhibition of sorbate. Addition of sorbate to foods has the potential of inactivating listeriolysin and other thiol-dependent toxins. 相似文献
3.
Nicole Meyer-Morse Jennifer R. Robbins Chris S. Rae Sofia N. Mochegova Michele S. Swanson Zijiang Zhao Herbert W. Virgin Daniel Portnoy 《PloS one》2010,5(1)
Background
Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection.Methodology/Principal Findings
However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5−/−). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L. monocytogenes. Infection of BMDMs with L. monocytogenes induced microtubule-associated protein light chain 3 (LC3) lipidation, consistent with autophagy activation, whereas a mutant lacking LLO did not. Infection of BMDMs that express LC3-GFP demonstrated that wild-type L. monocytogenes was encapsulated by LC3-GFP, consistent with autophagy activation, whereas a mutant lacking LLO was not. Bacillus subtilis expressing either LLO or a related cytolysin, perfringolysin O (PFO), induced LC3 colocalization and LC3 lipidation. Further, LLO-containing liposomes also recruited LC3-GFP, indicating that LLO was sufficient to induce targeted autophagy in the absence of infection. The role of autophagy had variable effects depending on the cell type assayed. In atg5−/− mouse embryonic fibroblasts, L. monocytogenes had a primary vacuole escape defect. However, the bacteria escaped and grew normally in atg5−/− BMDMs.Conclusions/Significance
We propose that membrane damage, such as that caused by LLO, triggers bacterial-targeted autophagy, although autophagy does not affect the fate of wild-type intracellular L. monocytogenes in primary BMDMs. 相似文献4.
Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection 总被引:1,自引:0,他引:1
The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L.?monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O,?a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allow L.?monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. 相似文献
5.
Listeriolysin O (LLO) is a toxin produced by Listeria monocytogenes, an opportunistic bacterial pathogen responsible for the disease listeriosis. This disease starts with the ingestion of contaminated foods and mainly affects immunocompromised individuals, newborns, and pregnant women. In the laboratory, L. monocytogenes is used as a model organism to study processes such as cell invasion, intracellular survival, and cell-to-cell spreading, as this Gram-positive bacterium has evolved elaborate molecular strategies to subvert host cell functions. LLO is a major virulence factor originally shown to be crucial for bacterial escape from the internalization vacuole after entry into cells. However, recent studies are revisiting the role of LLO during infection and are revealing new insights into the action of LLO, in particular before bacterial entry. These latest findings along with their impact on the infectious process will be discussed. 相似文献
6.
Cotter PD Draper LA Lawton EM Daly KM Groeger DS Casey PG Ross RP Hill C 《PLoS pathogens》2008,4(9):e1000144
Streptolysin S (SLS) is a bacteriocin-like haemolytic and cytotoxic virulence factor that plays a key role in the virulence of Group A Streptococcus (GAS), the causative agent of pharyngitis, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. Although it has long been thought that SLS and related peptides are produced by GAS and related streptococci only, there is evidence to suggest that a number of the most notorious Gram-positive pathogenic bacteria, including Listeria monocytogenes, Clostridium botulinum and Staphylococcus aureus, produce related peptides. The distribution of the L. monocytogenes cluster is particularly noteworthy in that it is found exclusively among a subset of lineage I strains; i.e., those responsible for the majority of outbreaks of listeriosis. Expression of these genes results in the production of a haemolytic and cytotoxic factor, designated Listeriolysin S, which contributes to virulence of the pathogen as assessed by murine- and human polymorphonuclear neutrophil-based studies. Thus, in the process of establishing the existence of an extended family of SLS-like modified virulence peptides (MVPs), the genetic basis for the enhanced virulence of a proportion of lineage I L. monocytogenes may have been revealed. 相似文献
7.
Real-time PCR assay to differentiate Listeriolysin S-positive and -negative strains of Listeria monocytogenes 总被引:1,自引:0,他引:1
Due to the severity of the food-borne infection listeriosis, strict legislation governs the detectable and permissible limits at which Listeria monocytogenes is permitted in foods. These requirements, coupled with the ubiquitous nature of L. monocytogenes strains and the potential for epidemic outbreaks, mean that the pathogen can devastate affected sectors of the food industry. Although almost all L. monocytogenes strains have the potential to cause listeriosis, those implicated in the vast majority of epidemics belong to a subset of strains belonging to evolutionary lineage I. It has been established that a significant proportion of these strains, including those implicated in the majority of outbreaks, produce an additional hemolysin, designated listeriolysin S (LLS), which may be responsible for the enhanced virulence of these strains. In order to ultimately establish this definitively, it is important to first be able to rapidly discriminate between LLS-positive and -negative strains. Here, after essential genes within the LLS-encoding cluster, Listeria pathogenicity island 3, were identified by deletion mutagenesis, a real-time PCR assay which targets one such gene, llsX, was developed as a means of identifying LLS-positive L. monocytogenes. The specificity of the assay was validated against a panel of 40 L. monocytogenes strains (20 of which were LLS positive) and 25 strains representative of other Listeria species. Furthermore, 1 CFU of an LLS-positive strain per 25 g/ml of spiked foods was detected in less than 30 h when the assay was coupled with culture enrichment. The detection limit of this assay was 10 genome equivalents. 相似文献
8.
Expression of ActA, Ami, InlB, and Listeriolysin O in Listeria monocytogenes of Human and Food Origin 总被引:1,自引:0,他引:1
下载免费PDF全文

Expression of proteins involved in the adhesion of Listeria monocytogenes to mammalian cells or in the intracellular life cycle of this bacterium, including listeriolysin O (LLO), ActA, Ami, and InlB, was used to compare two populations of L. monocytogenes strains. One of the populations comprised 300 clinical strains, and the other comprised 150 food strains. All strains expressed LLO, InlB, and ActA. No polymorphism was observed for LLO and InlB. Ami was detected in 283 of 300 human strains and in 149 of 150 food strains. The strains in which Ami was not detected were serovar 4b strains. Based on the molecular weights of the proteins detected, the strains were divided into two groups with Ami (groups Ami1 [75% of the strains] and Ami2 [21%]) and into four groups with ActA (groups ActA1 [52% of the strains], ActA2 [18%], ActA3 [30%], and ActA4 [one strain isolated from food]). Logistic regression showed that food strains were more likely to belong to group ActA3 than human strains (odds ratio [OR] = 2.90; P = 1 × 10−4). Of the strains isolated from patients with non-pregnancy-related cases of listeriosis, bacteremia was predominantly associated with group Ami1 strains (OR = 1.89; P = 1 × 10−2) and central nervous system infections were associated with group ActA2 strains (OR = 3.04; P = 1 × 10−3) and group ActA3 strains (OR = 3.91; P = 1 × 10−3). 相似文献
9.
Here we report that Caenorhabditis elegans nematodes fed Listeria monocytogenes die over the course of several days, as a consequence of an accumulation of bacteria in the worm intestine. Mutant strains previously shown to be important for virulence in mammalian models were also found to be attenuated in their virulence in C. elegans. However, ActA, which is required for actin-based intracellular motility, appears to be dispensable during infection of C. elegans, indicating that L. monocytogenes remains extracellular in C. elegans. 相似文献
10.
A simple and convenient method for the purification of the hemolytic toxin listeriolysin O (LLO) from Listeria monocytogenes is described. Supernatants from bacteria cultures were purified by application to a CH2 spiral cartridge concentrator (Amicon) and ion exchange chromatography. A critical step is removal of contaminating RNA. The purified proteins had characteristics described for bacterial thiol-activated hemolysins: activation by a reducing agent (DTT) and inactivation by cholesterol. In addition, the molecular weight of 58, 000 and pH-dependent hemolytic activity of this purified protein are consistent with the previously published characteristics of LLO. 相似文献
11.
T cell recognition of listeriolysin O is induced during infection with Listeria monocytogenes 总被引:16,自引:0,他引:16
P Berche J L Gaillard C Geoffroy J E Alouf 《Journal of immunology (Baltimore, Md. : 1950)》1987,139(11):3813-3821
During bacterial multiplication, Listeria monocytogenes (strain EGD) secretes sulfhydryl-dependent cytotoxin, termed listeriolysin O, a virulence factor presumable promoting intracellular growth of this ubiquitous pathogen. The role of this exotoxin in the process of T cell activation was studied in vivo during the course of an experimental infection in the mouse. By using highly purified listeriolysin O, it was found that infection with viable, replicative bacteria induced in vivo the emergence of T cells specifically reacting against this exotoxin, as demonstrated by eliciting the expression of delayed-type hypersensitivity to listeriolysin O in Listeria-immune mice. The kinetics of this inflammatory reaction followed the same pattern as that observed with crude Listeria antigenic preparation classically used for the detection of delayed-type hypersensitivity, with a peak of expression by day 6 and a slow decline over the next 3 wk to a residual level, indicating the presence of memory T cells reacting with the exotoxin. This result, therefore, allowed us to identify for the first time that a pure immunogenic molecule secreted by L. monocytogenes is specifically recognized by sensitized T cells induced during the course of infection by L. monocytogenes. The expression of T cell-mediated immunity to listeriolysin O was generated by very low amounts of replicative bacteria, indicating that the exotoxin released in host tissues during the process of intracellular growth is highly immunogenic. Our data favor the view that the binding of listeriolysin O to the membrane cholesterol might be a critical event potentiating the in vivo expression of delayed sensitivity against this exotoxin. Indeed, the insertion of listeriolysin O into the cell membrane induced resistance to enzymatic proteolysis and membrane-bound listeriolysin O was significantly more effective in inducing delayed inflammatory reaction in Listeria-immune mice. 相似文献
12.
Hamilton SE Badovinac VP Khanolkar A Harty JT 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(6):4012-4020
Strains of Listeria monocytogenes (LM) that are deficient in the virulence factor listeriolysin O (LLO) are highly attenuated and are thought not to elicit protective immunity. This failure has been attributed to the inability of the bacterium to enter the host cell cytosol and access MHC class I Ag processing machinery. We reexamined this issue using recombinant strains of LM that are deficient in LLO but express an additional CD8 T cell epitope derived from lymphocytic choriomeningitis virus. After infection with LLO-deficient strains, we find sizable priming of epitope-specific CD8 T cells and the development of a functional memory cell population. Mice primed with the LLO-deficient LM strain are equally resistant against high-dose challenge with virulent LM as mice primed with wild-type virulent bacteria and also resist heterologous challenge with lymphocytic choriomeningitis virus. Interestingly, priming with a low dose of LLO-deficient LM, which occurred in environment of reduced inflammation (IFN-gamma), allowed rapid amplification of Ag-specific CD8 T cells by booster immunization, despite an undetectable primary response. We conclude that the generation of protective immunity by LLO-deficient strains of LM does in fact occur and that this highly attenuated LM strain may be a useful platform for vaccine delivery. 相似文献
13.
The complete DNA sequences coding for the thiol-activated cytolysins from Listeria ivanovii, ivanolysin O (ILO) and for seeligerolysin O (LSO) from Listeria seeligeri have been determined. The deduced amino acid sequences revealed that: (i) the primary translation products comprise 528 (ILO) and 530 (LSO) amino acids, respectively, (ii) ILO contains two cysteines, LSO has a substitution in the conserved cysteine motif. 相似文献
14.
Lipoteichoic acid from Listeria monocytogenes. 总被引:3,自引:1,他引:3
A lipoteichoic acid (LTA) was extracted from Listeria monocytogenes (serotype 1) by phenol-water partition and isolated by gel-filtration chromatography. The LTA exhibited amphiphilic properties by changes in gel-filtration mobility in the presence of detergent buffers and after mild base hydrolysis. In a hemagglutination assay, Listeria LTA bound antibody prepared against a known LTA from Streptococcus spp. Listeria LTA inhibited the binding of anti-LTA antibody to a Lactobacillus LTA in a hemagglutination inhibition assay. The Listeria LTA contained glucose, galactose, fatty acids, glycerol, and phosphate with molar ratios of 0.05, 0.07, 0.21, 0.94, and 1.0 to phosphate, respectively. Adjacent glycerols were linked between the C-1 and C-3 positions by phosphodiesters (structural type 1). The average chain length was 19 +/- 2 (standard deviation) glycerol-phosphate repeating units. Approximately one glycosyl side chain was present per LTA molecule. The side chain was a galactose-containing disaccharide. The lipid portion of the LTA was a galactose- and glucose-containing glycolipid which may have been a phosphoglycolipid, but the structure was not confirmed. Major fatty acids of LTA and the glycolipid were 17:anteiso, 15:anteiso, 16:iso, 16:n, and 18:n. L. monocytogenes contained cell wall products typical of gram-positive bacteria which is in contrast to the reports by others of the presence of lipopolysaccharides from L. monocytogenes. 相似文献
15.
16.
《Autophagy》2013,9(8):1220-1221
Autophagy is a pivotal bulk degradation system that eliminates undesirable molecules, damaged organelles, and misfolded protein aggregates in response to diverse stimuli, including infection. Autophagy acts to limit intracellular microbial growth but intracellular pathogens have evolved strategies to subvert host autophagic responses for their survival. We found that Listeria monocytogenes ActA, a surface protein required for actin polymerization and actin-based bacterial motility, plays a pivotal role in evading autophagy, but in a manner independent of bacterial motility. We show that L. monocytogenes exploits the biomimetic property of ActA to camouflage itself with host proteins comprised of Ena/VASP and the Arp2/3 complex, thereby escaping recognition by autophagy (Fig. 1). 相似文献
17.
Listeria monocytogenes: a multifaceted model 总被引:1,自引:0,他引:1
The opportunistic intracellular pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. 相似文献
18.
Isolation of Listeria monocytogenes from raw milk 总被引:6,自引:0,他引:6
P S Hayes J C Feeley L M Graves G W Ajello D W Fleming 《Applied and environmental microbiology》1986,51(2):438-440
During a recent outbreak of listeriosis, we examined 121 raw milk samples and 14 milk socks (filters). Listeria monocytogenes was recovered from 15 (12%) of 121 milk specimens and 2 (14%) of 14 milk socks. The optimal processing method consisted of cold enriching diluted milk for 1 month with culture to selective broth, followed by plating. 相似文献
19.
20.
Forster BM Bitar AP Slepkov ER Kota KJ Sondermann H Marquis H 《Journal of bacteriology》2011,193(19):5090-5097
Listeria monocytogenes is an intracytosolic bacterial pathogen. Among the factors contributing to escape from vacuoles are a phosphatidylcholine phospholipase C (PC-PLC) and a metalloprotease (Mpl). Both enzymes are translocated across the bacterial membrane as inactive proproteins, whose propeptides serve in part to maintain them in association with the bacterium. We have shown that PC-PLC maturation is regulated by Mpl and pH and that Mpl maturation occurs by autocatalysis. In this study, we tested the hypothesis that Mpl activity is pH regulated. To synchronize the effect of pH on bacteria, the cytosolic pH of infected cells was manipulated immediately after radiolabeling de novo-synthesized bacterial proteins. Immunoprecipitation of secreted Mpl from host cell lysates revealed the presence of the propeptide and catalytic domain in samples treated at pH 6.5 but not at pH 7.3. The zymogen was present in small amounts under all conditions. Since proteases often remain associated with their respective propeptide following autocatalysis, we aimed at determining whether pH regulates autocatalysis or secretion of the processed enzyme. For this purpose, we used an Mpl construct that contains a Flag tag at the N terminus of its catalytic domain and antibodies that can distinguish N-terminal and non-N-terminal Flag. By fluorescence microscopy, we observed the Mpl zymogen associated with the bacterium at physiological pH but not following acidification. Mature Mpl was not detected in association with the bacterium at either pH. Using purified proteins, we determined that processing of the PC-PLC propeptide by mature Mpl is also pH sensitive. These results indicate that pH regulates the activity of Mpl on itself and on PC-PLC. 相似文献